mirror of
				https://github.com/qurator-spk/sbb_binarization.git
				synced 2025-10-31 17:44:14 +01:00 
			
		
		
		
	issue #45 the patches option is omitted and it means that documents will be processed in patches while no patches is not desired by the tool
This commit is contained in:
		
							parent
							
								
									eff7a47852
								
							
						
					
					
						commit
						7c3f2176f7
					
				
					 3 changed files with 125 additions and 142 deletions
				
			
		|  | @ -7,9 +7,8 @@ from .sbb_binarize import SbbBinarizer | |||
| 
 | ||||
| @command() | ||||
| @version_option() | ||||
| @option('--patches/--no-patches', default=True, help='by enabling this parameter you let the model to see the image in patches.') | ||||
| @option('--model-dir', '-m', type=types.Path(exists=True, file_okay=False), required=True, help='directory containing models for prediction') | ||||
| @argument('input_image') | ||||
| @argument('output_image') | ||||
| def main(patches, model_dir, input_image, output_image): | ||||
|     SbbBinarizer(model_dir).run(image_path=input_image, use_patches=patches, save=output_image) | ||||
| def main(model_dir, input_image, output_image): | ||||
|     SbbBinarizer(model_dir).run(image_path=input_image, save=output_image) | ||||
|  |  | |||
|  | @ -110,7 +110,7 @@ class SbbBinarizeProcessor(Processor): | |||
| 
 | ||||
|             if oplevel == 'page': | ||||
|                 LOG.info("Binarizing on 'page' level in page '%s'", page_id) | ||||
|                 bin_image = cv2pil(self.binarizer.run(image=pil2cv(page_image), use_patches=True)) | ||||
|                 bin_image = cv2pil(self.binarizer.run(image=pil2cv(page_image))) | ||||
|                 # update METS (add the image file): | ||||
|                 bin_image_path = self.workspace.save_image_file(bin_image, | ||||
|                         file_id + '.IMG-BIN', | ||||
|  | @ -124,7 +124,7 @@ class SbbBinarizeProcessor(Processor): | |||
|                     LOG.warning("Page '%s' contains no text/table regions", page_id) | ||||
|                 for region in regions: | ||||
|                     region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh, feature_filter='binarized') | ||||
|                     region_image_bin = cv2pil(binarizer.run(image=pil2cv(region_image), use_patches=True)) | ||||
|                     region_image_bin = cv2pil(binarizer.run(image=pil2cv(region_image))) | ||||
|                     region_image_bin_path = self.workspace.save_image_file( | ||||
|                             region_image_bin, | ||||
|                             "%s_%s.IMG-BIN" % (file_id, region.id), | ||||
|  | @ -139,7 +139,7 @@ class SbbBinarizeProcessor(Processor): | |||
|                     LOG.warning("Page '%s' contains no text lines", page_id) | ||||
|                 for region_id, line in region_line_tuples: | ||||
|                     line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized') | ||||
|                     line_image_bin = cv2pil(binarizer.run(image=pil2cv(line_image), use_patches=True)) | ||||
|                     line_image_bin = cv2pil(binarizer.run(image=pil2cv(line_image))) | ||||
|                     line_image_bin_path = self.workspace.save_image_file( | ||||
|                             line_image_bin, | ||||
|                             "%s_%s_%s.IMG-BIN" % (file_id, region_id, line.id), | ||||
|  |  | |||
|  | @ -62,7 +62,7 @@ class SbbBinarizer: | |||
|         n_classes = model.layers[len(model.layers)-1].output_shape[3] | ||||
|         return model, model_height, model_width, n_classes | ||||
| 
 | ||||
|     def predict(self, model_in, img, use_patches): | ||||
|     def predict(self, model_in, img): | ||||
|         tensorflow_backend.set_session(self.session) | ||||
|         model, model_height, model_width, n_classes = model_in | ||||
|          | ||||
|  | @ -101,152 +101,136 @@ class SbbBinarizer: | |||
|              | ||||
|              | ||||
|         img = np.copy(img_padded) | ||||
|          | ||||
|              | ||||
| 
 | ||||
|         if use_patches: | ||||
|         margin = int(0.1 * model_width) | ||||
| 
 | ||||
|             margin = int(0.1 * model_width) | ||||
| 
 | ||||
|             width_mid = model_width - 2 * margin | ||||
|             height_mid = model_height - 2 * margin | ||||
|         width_mid = model_width - 2 * margin | ||||
|         height_mid = model_height - 2 * margin | ||||
| 
 | ||||
| 
 | ||||
|             img = img / float(255.0) | ||||
|         img = img / float(255.0) | ||||
| 
 | ||||
|             img_h = img.shape[0] | ||||
|             img_w = img.shape[1] | ||||
|         img_h = img.shape[0] | ||||
|         img_w = img.shape[1] | ||||
| 
 | ||||
|             prediction_true = np.zeros((img_h, img_w, 3)) | ||||
|             mask_true = np.zeros((img_h, img_w)) | ||||
|             nxf = img_w / float(width_mid) | ||||
|             nyf = img_h / float(height_mid) | ||||
| 
 | ||||
|             if nxf > int(nxf): | ||||
|                 nxf = int(nxf) + 1 | ||||
|             else: | ||||
|                 nxf = int(nxf) | ||||
| 
 | ||||
|             if nyf > int(nyf): | ||||
|                 nyf = int(nyf) + 1 | ||||
|             else: | ||||
|                 nyf = int(nyf) | ||||
| 
 | ||||
|             for i in range(nxf): | ||||
|                 for j in range(nyf): | ||||
| 
 | ||||
|                     if i == 0: | ||||
|                         index_x_d = i * width_mid | ||||
|                         index_x_u = index_x_d + model_width | ||||
|                     elif i > 0: | ||||
|                         index_x_d = i * width_mid | ||||
|                         index_x_u = index_x_d + model_width | ||||
| 
 | ||||
|                     if j == 0: | ||||
|                         index_y_d = j * height_mid | ||||
|                         index_y_u = index_y_d + model_height | ||||
|                     elif j > 0: | ||||
|                         index_y_d = j * height_mid | ||||
|                         index_y_u = index_y_d + model_height | ||||
| 
 | ||||
|                     if index_x_u > img_w: | ||||
|                         index_x_u = img_w | ||||
|                         index_x_d = img_w - model_width | ||||
|                     if index_y_u > img_h: | ||||
|                         index_y_u = img_h | ||||
|                         index_y_d = img_h - model_height | ||||
| 
 | ||||
|                     img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | ||||
| 
 | ||||
|                     label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) | ||||
| 
 | ||||
|                     seg = np.argmax(label_p_pred, axis=3)[0] | ||||
| 
 | ||||
|                     seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
| 
 | ||||
|                     if i == 0 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf-1 and j == nyf-1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i == 0 and j == nyf-1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf-1 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i == 0 and j != 0 and j != nyf-1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf-1 and j != 0 and j != nyf-1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i != 0 and i != nxf-1 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i != 0 and i != nxf-1 and j == nyf-1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     else: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
|              | ||||
|              | ||||
|              | ||||
|             prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:] | ||||
|             prediction_true = prediction_true.astype(np.uint8) | ||||
|         prediction_true = np.zeros((img_h, img_w, 3)) | ||||
|         mask_true = np.zeros((img_h, img_w)) | ||||
|         nxf = img_w / float(width_mid) | ||||
|         nyf = img_h / float(height_mid) | ||||
| 
 | ||||
|         if nxf > int(nxf): | ||||
|             nxf = int(nxf) + 1 | ||||
|         else: | ||||
|             img_h_page = img.shape[0] | ||||
|             img_w_page = img.shape[1] | ||||
|             img = img / float(255.0) | ||||
|             img = resize_image(img, model_height, model_width) | ||||
|             nxf = int(nxf) | ||||
| 
 | ||||
|             label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2])) | ||||
|         if nyf > int(nyf): | ||||
|             nyf = int(nyf) + 1 | ||||
|         else: | ||||
|             nyf = int(nyf) | ||||
| 
 | ||||
|         for i in range(nxf): | ||||
|             for j in range(nyf): | ||||
| 
 | ||||
|                 if i == 0: | ||||
|                     index_x_d = i * width_mid | ||||
|                     index_x_u = index_x_d + model_width | ||||
|                 elif i > 0: | ||||
|                     index_x_d = i * width_mid | ||||
|                     index_x_u = index_x_d + model_width | ||||
| 
 | ||||
|                 if j == 0: | ||||
|                     index_y_d = j * height_mid | ||||
|                     index_y_u = index_y_d + model_height | ||||
|                 elif j > 0: | ||||
|                     index_y_d = j * height_mid | ||||
|                     index_y_u = index_y_d + model_height | ||||
| 
 | ||||
|                 if index_x_u > img_w: | ||||
|                     index_x_u = img_w | ||||
|                     index_x_d = img_w - model_width | ||||
|                 if index_y_u > img_h: | ||||
|                     index_y_u = img_h | ||||
|                     index_y_d = img_h - model_height | ||||
| 
 | ||||
|                 img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | ||||
| 
 | ||||
|                 label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) | ||||
| 
 | ||||
|                 seg = np.argmax(label_p_pred, axis=3)[0] | ||||
| 
 | ||||
|                 seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
| 
 | ||||
|                 if i == 0 and j == 0: | ||||
|                     seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | ||||
|                     seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                     mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                     prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                 elif i == nxf-1 and j == nyf-1: | ||||
|                     seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :] | ||||
|                     seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                     mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg | ||||
|                     prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                 elif i == 0 and j == nyf-1: | ||||
|                     seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :] | ||||
|                     seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                     mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg | ||||
|                     prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                 elif i == nxf-1 and j == 0: | ||||
|                     seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                     seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                     mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                     prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                 elif i == 0 and j != 0 and j != nyf-1: | ||||
|                     seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | ||||
|                     seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                     mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                     prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                 elif i == nxf-1 and j != 0 and j != nyf-1: | ||||
|                     seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                     seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                     mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                     prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                 elif i != 0 and i != nxf-1 and j == 0: | ||||
|                     seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | ||||
|                     seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                     mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                     prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                 elif i != 0 and i != nxf-1 and j == nyf-1: | ||||
|                     seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :] | ||||
|                     seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                     mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg | ||||
|                     prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                 else: | ||||
|                     seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | ||||
|                     seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                     mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                     prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
|          | ||||
|          | ||||
|          | ||||
|         prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:] | ||||
|         prediction_true = prediction_true.astype(np.uint8) | ||||
| 
 | ||||
|             seg = np.argmax(label_p_pred, axis=3)[0] | ||||
|             seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
|             prediction_true = resize_image(seg_color, img_h_page, img_w_page) | ||||
|             prediction_true = prediction_true.astype(np.uint8) | ||||
|         return prediction_true[:,:,0] | ||||
| 
 | ||||
|     def run(self, image=None, image_path=None, save=None, use_patches=False): | ||||
|     def run(self, image=None, image_path=None, save=None): | ||||
|         if (image is not None and image_path is not None) or \ | ||||
|                (image is None and image_path is None): | ||||
|             raise ValueError("Must pass either a opencv2 image or an image_path") | ||||
|  | @ -256,7 +240,7 @@ class SbbBinarizer: | |||
|         for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): | ||||
|             self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files))) | ||||
| 
 | ||||
|             res = self.predict(model, image, use_patches) | ||||
|             res = self.predict(model, image) | ||||
| 
 | ||||
|             img_fin = np.zeros((res.shape[0], res.shape[1], 3)) | ||||
|             res[:, :][res[:, :] == 0] = 2 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue