mirror of
				https://github.com/qurator-spk/sbb_binarization.git
				synced 2025-10-31 17:44:14 +01:00 
			
		
		
		
	issue #45 the patches option is omitted and it means that documents will be processed in patches while no patches is not desired by the tool
This commit is contained in:
		
							parent
							
								
									eff7a47852
								
							
						
					
					
						commit
						7c3f2176f7
					
				
					 3 changed files with 125 additions and 142 deletions
				
			
		|  | @ -7,9 +7,8 @@ from .sbb_binarize import SbbBinarizer | ||||||
| 
 | 
 | ||||||
| @command() | @command() | ||||||
| @version_option() | @version_option() | ||||||
| @option('--patches/--no-patches', default=True, help='by enabling this parameter you let the model to see the image in patches.') |  | ||||||
| @option('--model-dir', '-m', type=types.Path(exists=True, file_okay=False), required=True, help='directory containing models for prediction') | @option('--model-dir', '-m', type=types.Path(exists=True, file_okay=False), required=True, help='directory containing models for prediction') | ||||||
| @argument('input_image') | @argument('input_image') | ||||||
| @argument('output_image') | @argument('output_image') | ||||||
| def main(patches, model_dir, input_image, output_image): | def main(model_dir, input_image, output_image): | ||||||
|     SbbBinarizer(model_dir).run(image_path=input_image, use_patches=patches, save=output_image) |     SbbBinarizer(model_dir).run(image_path=input_image, save=output_image) | ||||||
|  |  | ||||||
|  | @ -110,7 +110,7 @@ class SbbBinarizeProcessor(Processor): | ||||||
| 
 | 
 | ||||||
|             if oplevel == 'page': |             if oplevel == 'page': | ||||||
|                 LOG.info("Binarizing on 'page' level in page '%s'", page_id) |                 LOG.info("Binarizing on 'page' level in page '%s'", page_id) | ||||||
|                 bin_image = cv2pil(self.binarizer.run(image=pil2cv(page_image), use_patches=True)) |                 bin_image = cv2pil(self.binarizer.run(image=pil2cv(page_image))) | ||||||
|                 # update METS (add the image file): |                 # update METS (add the image file): | ||||||
|                 bin_image_path = self.workspace.save_image_file(bin_image, |                 bin_image_path = self.workspace.save_image_file(bin_image, | ||||||
|                         file_id + '.IMG-BIN', |                         file_id + '.IMG-BIN', | ||||||
|  | @ -124,7 +124,7 @@ class SbbBinarizeProcessor(Processor): | ||||||
|                     LOG.warning("Page '%s' contains no text/table regions", page_id) |                     LOG.warning("Page '%s' contains no text/table regions", page_id) | ||||||
|                 for region in regions: |                 for region in regions: | ||||||
|                     region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh, feature_filter='binarized') |                     region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh, feature_filter='binarized') | ||||||
|                     region_image_bin = cv2pil(binarizer.run(image=pil2cv(region_image), use_patches=True)) |                     region_image_bin = cv2pil(binarizer.run(image=pil2cv(region_image))) | ||||||
|                     region_image_bin_path = self.workspace.save_image_file( |                     region_image_bin_path = self.workspace.save_image_file( | ||||||
|                             region_image_bin, |                             region_image_bin, | ||||||
|                             "%s_%s.IMG-BIN" % (file_id, region.id), |                             "%s_%s.IMG-BIN" % (file_id, region.id), | ||||||
|  | @ -139,7 +139,7 @@ class SbbBinarizeProcessor(Processor): | ||||||
|                     LOG.warning("Page '%s' contains no text lines", page_id) |                     LOG.warning("Page '%s' contains no text lines", page_id) | ||||||
|                 for region_id, line in region_line_tuples: |                 for region_id, line in region_line_tuples: | ||||||
|                     line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized') |                     line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized') | ||||||
|                     line_image_bin = cv2pil(binarizer.run(image=pil2cv(line_image), use_patches=True)) |                     line_image_bin = cv2pil(binarizer.run(image=pil2cv(line_image))) | ||||||
|                     line_image_bin_path = self.workspace.save_image_file( |                     line_image_bin_path = self.workspace.save_image_file( | ||||||
|                             line_image_bin, |                             line_image_bin, | ||||||
|                             "%s_%s_%s.IMG-BIN" % (file_id, region_id, line.id), |                             "%s_%s_%s.IMG-BIN" % (file_id, region_id, line.id), | ||||||
|  |  | ||||||
|  | @ -62,7 +62,7 @@ class SbbBinarizer: | ||||||
|         n_classes = model.layers[len(model.layers)-1].output_shape[3] |         n_classes = model.layers[len(model.layers)-1].output_shape[3] | ||||||
|         return model, model_height, model_width, n_classes |         return model, model_height, model_width, n_classes | ||||||
| 
 | 
 | ||||||
|     def predict(self, model_in, img, use_patches): |     def predict(self, model_in, img): | ||||||
|         tensorflow_backend.set_session(self.session) |         tensorflow_backend.set_session(self.session) | ||||||
|         model, model_height, model_width, n_classes = model_in |         model, model_height, model_width, n_classes = model_in | ||||||
|          |          | ||||||
|  | @ -102,10 +102,6 @@ class SbbBinarizer: | ||||||
|              |              | ||||||
|         img = np.copy(img_padded) |         img = np.copy(img_padded) | ||||||
| 
 | 
 | ||||||
|              |  | ||||||
| 
 |  | ||||||
|         if use_patches: |  | ||||||
| 
 |  | ||||||
|         margin = int(0.1 * model_width) |         margin = int(0.1 * model_width) | ||||||
| 
 | 
 | ||||||
|         width_mid = model_width - 2 * margin |         width_mid = model_width - 2 * margin | ||||||
|  | @ -232,21 +228,9 @@ class SbbBinarizer: | ||||||
|         prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:] |         prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:] | ||||||
|         prediction_true = prediction_true.astype(np.uint8) |         prediction_true = prediction_true.astype(np.uint8) | ||||||
| 
 | 
 | ||||||
|         else: |  | ||||||
|             img_h_page = img.shape[0] |  | ||||||
|             img_w_page = img.shape[1] |  | ||||||
|             img = img / float(255.0) |  | ||||||
|             img = resize_image(img, model_height, model_width) |  | ||||||
| 
 |  | ||||||
|             label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2])) |  | ||||||
| 
 |  | ||||||
|             seg = np.argmax(label_p_pred, axis=3)[0] |  | ||||||
|             seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) |  | ||||||
|             prediction_true = resize_image(seg_color, img_h_page, img_w_page) |  | ||||||
|             prediction_true = prediction_true.astype(np.uint8) |  | ||||||
|         return prediction_true[:,:,0] |         return prediction_true[:,:,0] | ||||||
| 
 | 
 | ||||||
|     def run(self, image=None, image_path=None, save=None, use_patches=False): |     def run(self, image=None, image_path=None, save=None): | ||||||
|         if (image is not None and image_path is not None) or \ |         if (image is not None and image_path is not None) or \ | ||||||
|                (image is None and image_path is None): |                (image is None and image_path is None): | ||||||
|             raise ValueError("Must pass either a opencv2 image or an image_path") |             raise ValueError("Must pass either a opencv2 image or an image_path") | ||||||
|  | @ -256,7 +240,7 @@ class SbbBinarizer: | ||||||
|         for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): |         for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): | ||||||
|             self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files))) |             self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files))) | ||||||
| 
 | 
 | ||||||
|             res = self.predict(model, image, use_patches) |             res = self.predict(model, image) | ||||||
| 
 | 
 | ||||||
|             img_fin = np.zeros((res.shape[0], res.shape[1], 3)) |             img_fin = np.zeros((res.shape[0], res.shape[1], 3)) | ||||||
|             res[:, :][res[:, :] == 0] = 2 |             res[:, :][res[:, :] == 0] = 2 | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue