@ -1,42 +1,43 @@
"""
Tool to load model and binarize a given image .
"""
import argparse
import sys
from glob import glob
from os import environ , devnull
from os. path import join
from warnings import catch_warnings , simplefilter
from pathlib import Path
from typing import Union
import numpy as np
from PIL import Image
import cv2
import numpy as np
environ [ ' TF_CPP_MIN_LOG_LEVEL ' ] = ' 3 '
stderr = sys . stderr
sys . stderr = open ( devnull , ' w ' )
import tensorflow as tf
from tensorflow . keras . models import load_model
from tensorflow . python . keras import backend as tensorflow_backend
sys . stderr = stderr
sys . stderr = stderr
import logging
def resize_image ( img_in , input_height , input_width ) :
return cv2 . resize ( img_in , ( input_width , input_height ) , interpolation = cv2 . INTER_NEAREST )
class SbbBinarizer :
def __init__ ( self , model_dir , logger = None ) :
self . model_dir = model_dir
def __init__ ( self , model_dir : Union [ str , Path ] , logger = None ) :
model_dir = Path( model_dir)
self . log = logger if logger else logging . getLogger ( ' SbbBinarizer ' )
self . start_new_session ( )
self . model_files = glob ( ' %s /*.h5 ' % self . model_dir )
self . model_files = list ( [ str ( p . absolute ( ) ) for p in model_dir . rglob ( " *.h5 " ) ] )
if not self . model_files :
raise ValueError ( f " No models found in { self . model_dir } " )
raise ValueError ( f " No models found in { str ( model_dir ) } " )
self . models = [ ]
for model_file in self . model_files :
self . models . append ( self . load_model ( model_file ) )
@ -53,54 +54,51 @@ class SbbBinarizer:
self . session . close ( )
del self . session
def load_model ( self , model_ name ) :
model = load_model ( model_ name , compile = False )
model_height = model . layers [ len ( model . layers ) - 1 ] . output_shape [ 1 ]
model_width = model . layers [ len ( model . layers ) - 1 ] . output_shape [ 2 ]
n_classes = model . layers [ len ( model . layers ) - 1 ] . output_shape [ 3 ]
def load_model ( self , model_ path: str ) :
model = load_model ( model_ path , compile = False )
model_height = model . layers [ len ( model . layers ) - 1 ] . output_shape [ 1 ]
model_width = model . layers [ len ( model . layers ) - 1 ] . output_shape [ 2 ]
n_classes = model . layers [ len ( model . layers ) - 1 ] . output_shape [ 3 ]
return model , model_height , model_width , n_classes
def predict ( self , model_in , img , use_patches ) :
tensorflow_backend . set_session ( self . session )
model , model_height , model_width , n_classes = model_in
img_org_h = img . shape [ 0 ]
img_org_w = img . shape [ 1 ]
if img . shape [ 0 ] < model_height and img . shape [ 1 ] > = model_width :
img_padded = np . zeros ( ( model_height , img . shape [ 1 ] , img . shape [ 2 ] ) )
index_start_h = int ( abs ( img . shape [ 0 ] - model_height ) / 2. )
img_padded = np . zeros ( ( model_height , img . shape [ 1 ] , img . shape [ 2 ] ) )
index_start_h = int ( abs ( img . shape [ 0 ] - model_height ) / 2. )
index_start_w = 0
img_padded [ index_start_h : index_start_h + img . shape [ 0 ] , : , : ] = img [ : , : , : ]
img_padded [ index_start_h : index_start_h + img . shape [ 0 ] , : , : ] = img [ : , : , : ]
elif img . shape [ 0 ] > = model_height and img . shape [ 1 ] < model_width :
img_padded = np . zeros ( ( img . shape [ 0 ] , model_width , img . shape [ 2 ] ) )
index_start_h = 0
index_start_w = int ( abs ( img . shape [ 1 ] - model_width ) / 2. )
img_padded [ : , index_start_w : index_start_w + img . shape [ 1 ] , : ] = img [ : , : , : ]
img_padded = np . zeros ( ( img . shape [ 0 ] , model_width , img . shape [ 2 ] ) )
index_start_h = 0
index_start_w = int ( abs ( img . shape [ 1 ] - model_width ) / 2. )
img_padded [ : , index_start_w : index_start_w + img . shape [ 1 ] , : ] = img [ : , : , : ]
elif img . shape [ 0 ] < model_height and img . shape [ 1 ] < model_width :
img_padded = np . zeros ( ( model_height , model_width , img . shape [ 2 ] ) )
index_start_h = int ( abs ( img . shape [ 0 ] - model_height ) / 2. )
index_start_w = int ( abs ( img . shape [ 1 ] - model_width ) / 2. )
img_padded [ index_start_h : index_start_h + img . shape [ 0 ] , index_start_w : index_start_w + img . shape [ 1 ] , : ] = img [ : , : , : ]
img_padded = np . zeros ( ( model_height , model_width , img . shape [ 2 ] ) )
index_start_h = int ( abs ( img . shape [ 0 ] - model_height ) / 2. )
index_start_w = int ( abs ( img . shape [ 1 ] - model_width ) / 2. )
img_padded [ index_start_h : index_start_h + img . shape [ 0 ] , index_start_w : index_start_w + img . shape [ 1 ] , : ] = img [ : , : , : ]
else :
index_start_h = 0
index_start_w = 0
index_start_w = 0
img_padded = np . copy ( img )
img = np . copy ( img_padded )
if use_patches :
@ -109,7 +107,6 @@ class SbbBinarizer:
width_mid = model_width - 2 * margin
height_mid = model_height - 2 * margin
img = img / float ( 255.0 )
img_h = img . shape [ 0 ]
@ -169,49 +166,49 @@ class SbbBinarizer:
mask_true [ index_y_d + 0 : index_y_u - margin , index_x_d + 0 : index_x_u - margin ] = seg
prediction_true [ index_y_d + 0 : index_y_u - margin , index_x_d + 0 : index_x_u - margin , : ] = seg_color
elif i == nxf - 1 and j == nyf - 1 :
elif i == nxf - 1 and j == nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - 0 , margin : seg_color . shape [ 1 ] - 0 , : ]
seg = seg [ margin : seg . shape [ 0 ] - 0 , margin : seg . shape [ 1 ] - 0 ]
mask_true [ index_y_d + margin : index_y_u - 0 , index_x_d + margin : index_x_u - 0 ] = seg
prediction_true [ index_y_d + margin : index_y_u - 0 , index_x_d + margin : index_x_u - 0 , : ] = seg_color
elif i == 0 and j == nyf - 1 :
elif i == 0 and j == nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - 0 , 0 : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ margin : seg . shape [ 0 ] - 0 , 0 : seg . shape [ 1 ] - margin ]
mask_true [ index_y_d + margin : index_y_u - 0 , index_x_d + 0 : index_x_u - margin ] = seg
prediction_true [ index_y_d + margin : index_y_u - 0 , index_x_d + 0 : index_x_u - margin , : ] = seg_color
elif i == nxf - 1 and j == 0 :
elif i == nxf - 1 and j == 0 :
seg_color = seg_color [ 0 : seg_color . shape [ 0 ] - margin , margin : seg_color . shape [ 1 ] - 0 , : ]
seg = seg [ 0 : seg . shape [ 0 ] - margin , margin : seg . shape [ 1 ] - 0 ]
mask_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - 0 ] = seg
prediction_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - 0 , : ] = seg_color
elif i == 0 and j != 0 and j != nyf - 1 :
elif i == 0 and j != 0 and j != nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - margin , 0 : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ margin : seg . shape [ 0 ] - margin , 0 : seg . shape [ 1 ] - margin ]
mask_true [ index_y_d + margin : index_y_u - margin , index_x_d + 0 : index_x_u - margin ] = seg
prediction_true [ index_y_d + margin : index_y_u - margin , index_x_d + 0 : index_x_u - margin , : ] = seg_color
elif i == nxf - 1 and j != 0 and j != nyf - 1 :
elif i == nxf - 1 and j != 0 and j != nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - margin , margin : seg_color . shape [ 1 ] - 0 , : ]
seg = seg [ margin : seg . shape [ 0 ] - margin , margin : seg . shape [ 1 ] - 0 ]
mask_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - 0 ] = seg
prediction_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - 0 , : ] = seg_color
elif i != 0 and i != nxf - 1 and j == 0 :
elif i != 0 and i != nxf - 1 and j == 0 :
seg_color = seg_color [ 0 : seg_color . shape [ 0 ] - margin , margin : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ 0 : seg . shape [ 0 ] - margin , margin : seg . shape [ 1 ] - margin ]
mask_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - margin ] = seg
prediction_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - margin , : ] = seg_color
elif i != 0 and i != nxf - 1 and j == nyf - 1 :
elif i != 0 and i != nxf - 1 and j == nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - 0 , margin : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ margin : seg . shape [ 0 ] - 0 , margin : seg . shape [ 1 ] - margin ]
@ -224,10 +221,8 @@ class SbbBinarizer:
mask_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - margin ] = seg
prediction_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - margin , : ] = seg_color
prediction_true = prediction_true [ index_start_h : index_start_h + img_org_h , index_start_w : index_start_w + img_org_w , : ]
prediction_true = prediction_true [ index_start_h : index_start_h + img_org_h , index_start_w : index_start_w + img_org_w , : ]
prediction_true = prediction_true . astype ( np . uint8 )
else :
@ -242,17 +237,16 @@ class SbbBinarizer:
seg_color = np . repeat ( seg [ : , : , np . newaxis ] , 3 , axis = 2 )
prediction_true = resize_image ( seg_color , img_h_page , img_w_page )
prediction_true = prediction_true . astype ( np . uint8 )
return prediction_true [ : , : , 0 ]
return prediction_true [ : , : , 0 ]
def run ( self , image = None , image_path = None , save = None , use_patches = False ) :
if ( image is not None and image_path is not None ) or \
( image is None and image_path is None ) :
if ( image is not None and image_path is not None ) or ( image is None and image_path is None ) :
raise ValueError ( " Must pass either a opencv2 image or an image_path " )
if image_path is not None :
image = cv2 . imread ( image_path )
img_last = 0
for n , ( model , model_file ) in enumerate ( zip ( self . models , self . model_files ) ) :
self . log . info ( ' Predicting with model %s [ %s / %s ] ' % ( model_file , n + 1 , len ( self . model_files ) ) )
self . log . info ( f" Predicting with model { model_file } [ { n + 1 } / { len ( self . model_files ) } ] " )
res = self . predict ( model , image , use_patches )
@ -272,5 +266,7 @@ class SbbBinarizer:
img_last [ : , : ] [ img_last [ : , : ] > 0 ] = 255
img_last = ( img_last [ : , : ] == 0 ) * 255
if save :
# Create the output directory (and if necessary it's parents) if it doesn't exist already
Path ( save ) . parent . mkdir ( parents = True , exist_ok = True )
cv2 . imwrite ( save , img_last )
return img_last