mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-06-09 12:19:56 +02:00
Improved loading of models to allow providing a directory, added a few type-hints and improved the code-style a little bit by running an auto-formatter on the entire file.
This commit is contained in:
parent
f11d0b0bf7
commit
b0a8b613e8
1 changed files with 57 additions and 61 deletions
|
@ -1,42 +1,43 @@
|
|||
"""
|
||||
Tool to load model and binarize a given image.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
from glob import glob
|
||||
from os import environ, devnull
|
||||
from os.path import join
|
||||
from warnings import catch_warnings, simplefilter
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
stderr = sys.stderr
|
||||
sys.stderr = open(devnull, 'w')
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.models import load_model
|
||||
from tensorflow.python.keras import backend as tensorflow_backend
|
||||
|
||||
sys.stderr = stderr
|
||||
|
||||
|
||||
import logging
|
||||
|
||||
|
||||
def resize_image(img_in, input_height, input_width):
|
||||
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
|
||||
class SbbBinarizer:
|
||||
|
||||
def __init__(self, model_dir, logger=None):
|
||||
self.model_dir = model_dir
|
||||
def __init__(self, model_dir: Union[str, Path], logger=None):
|
||||
model_dir = Path(model_dir)
|
||||
self.log = logger if logger else logging.getLogger('SbbBinarizer')
|
||||
|
||||
self.start_new_session()
|
||||
|
||||
self.model_files = glob('%s/*.h5' % self.model_dir)
|
||||
self.model_files = list([str(p.absolute()) for p in model_dir.rglob("*.h5")])
|
||||
if not self.model_files:
|
||||
raise ValueError(f"No models found in {self.model_dir}")
|
||||
|
||||
raise ValueError(f"No models found in {str(model_dir)}")
|
||||
|
||||
self.models = []
|
||||
for model_file in self.model_files:
|
||||
self.models.append(self.load_model(model_file))
|
||||
|
@ -53,54 +54,51 @@ class SbbBinarizer:
|
|||
self.session.close()
|
||||
del self.session
|
||||
|
||||
def load_model(self, model_name):
|
||||
model = load_model(model_name, compile=False)
|
||||
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
||||
model_width = model.layers[len(model.layers)-1].output_shape[2]
|
||||
n_classes = model.layers[len(model.layers)-1].output_shape[3]
|
||||
def load_model(self, model_path: str):
|
||||
model = load_model(model_path, compile=False)
|
||||
model_height = model.layers[len(model.layers) - 1].output_shape[1]
|
||||
model_width = model.layers[len(model.layers) - 1].output_shape[2]
|
||||
n_classes = model.layers[len(model.layers) - 1].output_shape[3]
|
||||
return model, model_height, model_width, n_classes
|
||||
|
||||
def predict(self, model_in, img, use_patches):
|
||||
tensorflow_backend.set_session(self.session)
|
||||
model, model_height, model_width, n_classes = model_in
|
||||
|
||||
|
||||
img_org_h = img.shape[0]
|
||||
img_org_w = img.shape[1]
|
||||
|
||||
|
||||
if img.shape[0] < model_height and img.shape[1] >= model_width:
|
||||
img_padded = np.zeros(( model_height, img.shape[1], img.shape[2] ))
|
||||
|
||||
index_start_h = int( abs( img.shape[0] - model_height) /2.)
|
||||
img_padded = np.zeros((model_height, img.shape[1], img.shape[2]))
|
||||
|
||||
index_start_h = int(abs(img.shape[0] - model_height) / 2.)
|
||||
index_start_w = 0
|
||||
|
||||
img_padded [ index_start_h: index_start_h+img.shape[0], :, : ] = img[:,:,:]
|
||||
|
||||
|
||||
img_padded[index_start_h: index_start_h + img.shape[0], :, :] = img[:, :, :]
|
||||
|
||||
elif img.shape[0] >= model_height and img.shape[1] < model_width:
|
||||
img_padded = np.zeros(( img.shape[0], model_width, img.shape[2] ))
|
||||
|
||||
index_start_h = 0
|
||||
index_start_w = int( abs( img.shape[1] - model_width) /2.)
|
||||
|
||||
img_padded [ :, index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:]
|
||||
|
||||
|
||||
img_padded = np.zeros((img.shape[0], model_width, img.shape[2]))
|
||||
|
||||
index_start_h = 0
|
||||
index_start_w = int(abs(img.shape[1] - model_width) / 2.)
|
||||
|
||||
img_padded[:, index_start_w: index_start_w + img.shape[1], :] = img[:, :, :]
|
||||
|
||||
|
||||
elif img.shape[0] < model_height and img.shape[1] < model_width:
|
||||
img_padded = np.zeros(( model_height, model_width, img.shape[2] ))
|
||||
|
||||
index_start_h = int( abs( img.shape[0] - model_height) /2.)
|
||||
index_start_w = int( abs( img.shape[1] - model_width) /2.)
|
||||
|
||||
img_padded [ index_start_h: index_start_h+img.shape[0], index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:]
|
||||
|
||||
img_padded = np.zeros((model_height, model_width, img.shape[2]))
|
||||
|
||||
index_start_h = int(abs(img.shape[0] - model_height) / 2.)
|
||||
index_start_w = int(abs(img.shape[1] - model_width) / 2.)
|
||||
|
||||
img_padded[index_start_h: index_start_h + img.shape[0], index_start_w: index_start_w + img.shape[1], :] = img[:, :, :]
|
||||
|
||||
else:
|
||||
index_start_h = 0
|
||||
index_start_w = 0
|
||||
index_start_w = 0
|
||||
img_padded = np.copy(img)
|
||||
|
||||
|
||||
|
||||
img = np.copy(img_padded)
|
||||
|
||||
|
||||
|
||||
if use_patches:
|
||||
|
||||
|
@ -109,7 +107,6 @@ class SbbBinarizer:
|
|||
width_mid = model_width - 2 * margin
|
||||
height_mid = model_height - 2 * margin
|
||||
|
||||
|
||||
img = img / float(255.0)
|
||||
|
||||
img_h = img.shape[0]
|
||||
|
@ -169,49 +166,49 @@ class SbbBinarizer:
|
|||
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
||||
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color
|
||||
|
||||
elif i == nxf-1 and j == nyf-1:
|
||||
elif i == nxf - 1 and j == nyf - 1:
|
||||
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
|
||||
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
|
||||
|
||||
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
|
||||
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, :] = seg_color
|
||||
|
||||
elif i == 0 and j == nyf-1:
|
||||
elif i == 0 and j == nyf - 1:
|
||||
seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
|
||||
seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
|
||||
|
||||
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
|
||||
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, :] = seg_color
|
||||
|
||||
elif i == nxf-1 and j == 0:
|
||||
elif i == nxf - 1 and j == 0:
|
||||
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
||||
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
||||
|
||||
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
||||
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color
|
||||
|
||||
elif i == 0 and j != 0 and j != nyf-1:
|
||||
elif i == 0 and j != 0 and j != nyf - 1:
|
||||
seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
||||
seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
||||
|
||||
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
||||
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color
|
||||
|
||||
elif i == nxf-1 and j != 0 and j != nyf-1:
|
||||
elif i == nxf - 1 and j != 0 and j != nyf - 1:
|
||||
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
||||
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
||||
|
||||
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
||||
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color
|
||||
|
||||
elif i != 0 and i != nxf-1 and j == 0:
|
||||
elif i != 0 and i != nxf - 1 and j == 0:
|
||||
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
|
||||
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
||||
|
||||
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
||||
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color
|
||||
|
||||
elif i != 0 and i != nxf-1 and j == nyf-1:
|
||||
elif i != 0 and i != nxf - 1 and j == nyf - 1:
|
||||
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
|
||||
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
|
||||
|
||||
|
@ -224,10 +221,8 @@ class SbbBinarizer:
|
|||
|
||||
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
||||
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color
|
||||
|
||||
|
||||
|
||||
prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:]
|
||||
|
||||
prediction_true = prediction_true[index_start_h: index_start_h + img_org_h, index_start_w: index_start_w + img_org_w, :]
|
||||
prediction_true = prediction_true.astype(np.uint8)
|
||||
|
||||
else:
|
||||
|
@ -242,17 +237,16 @@ class SbbBinarizer:
|
|||
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
||||
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
|
||||
prediction_true = prediction_true.astype(np.uint8)
|
||||
return prediction_true[:,:,0]
|
||||
return prediction_true[:, :, 0]
|
||||
|
||||
def run(self, image=None, image_path=None, save=None, use_patches=False):
|
||||
if (image is not None and image_path is not None) or \
|
||||
(image is None and image_path is None):
|
||||
if (image is not None and image_path is not None) or (image is None and image_path is None):
|
||||
raise ValueError("Must pass either a opencv2 image or an image_path")
|
||||
if image_path is not None:
|
||||
image = cv2.imread(image_path)
|
||||
img_last = 0
|
||||
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
|
||||
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
|
||||
self.log.info(f"Predicting with model {model_file} [{n + 1}/{len(self.model_files)}]")
|
||||
|
||||
res = self.predict(model, image, use_patches)
|
||||
|
||||
|
@ -272,5 +266,7 @@ class SbbBinarizer:
|
|||
img_last[:, :][img_last[:, :] > 0] = 255
|
||||
img_last = (img_last[:, :] == 0) * 255
|
||||
if save:
|
||||
# Create the output directory (and if necessary it's parents) if it doesn't exist already
|
||||
Path(save).parent.mkdir(parents=True, exist_ok=True)
|
||||
cv2.imwrite(save, img_last)
|
||||
return img_last
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue