mirror of
				https://github.com/qurator-spk/sbb_binarization.git
				synced 2025-10-31 01:24:14 +01:00 
			
		
		
		
	Improved loading of models to allow providing a directory, added a few type-hints and improved the code-style a little bit by running an auto-formatter on the entire file.
This commit is contained in:
		
							parent
							
								
									f11d0b0bf7
								
							
						
					
					
						commit
						b0a8b613e8
					
				
					 1 changed files with 57 additions and 61 deletions
				
			
		|  | @ -1,42 +1,43 @@ | |||
| """ | ||||
| Tool to load model and binarize a given image. | ||||
| """ | ||||
| 
 | ||||
| import argparse | ||||
| import sys | ||||
| from glob import glob | ||||
| from os import environ, devnull | ||||
| from os.path import join | ||||
| from warnings import catch_warnings, simplefilter | ||||
| from pathlib import Path | ||||
| from typing import Union | ||||
| 
 | ||||
| import numpy as np | ||||
| from PIL import Image | ||||
| import cv2 | ||||
| import numpy as np | ||||
| 
 | ||||
| environ['TF_CPP_MIN_LOG_LEVEL'] = '3' | ||||
| stderr = sys.stderr | ||||
| sys.stderr = open(devnull, 'w') | ||||
| import tensorflow as tf | ||||
| from tensorflow.keras.models import load_model | ||||
| from tensorflow.python.keras import backend as tensorflow_backend | ||||
| 
 | ||||
| sys.stderr = stderr | ||||
| 
 | ||||
| 
 | ||||
| import logging | ||||
| 
 | ||||
| 
 | ||||
| def resize_image(img_in, input_height, input_width): | ||||
|     return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST) | ||||
| 
 | ||||
| 
 | ||||
| class SbbBinarizer: | ||||
| 
 | ||||
|     def __init__(self, model_dir, logger=None): | ||||
|         self.model_dir = model_dir | ||||
|     def __init__(self, model_dir: Union[str, Path], logger=None): | ||||
|         model_dir = Path(model_dir) | ||||
|         self.log = logger if logger else logging.getLogger('SbbBinarizer') | ||||
| 
 | ||||
|         self.start_new_session() | ||||
| 
 | ||||
|         self.model_files = glob('%s/*.h5' % self.model_dir) | ||||
|         self.model_files = list([str(p.absolute()) for p in model_dir.rglob("*.h5")]) | ||||
|         if not self.model_files: | ||||
|             raise ValueError(f"No models found in {self.model_dir}") | ||||
|          | ||||
|             raise ValueError(f"No models found in {str(model_dir)}") | ||||
| 
 | ||||
|         self.models = [] | ||||
|         for model_file in self.model_files: | ||||
|             self.models.append(self.load_model(model_file)) | ||||
|  | @ -53,54 +54,51 @@ class SbbBinarizer: | |||
|         self.session.close() | ||||
|         del self.session | ||||
| 
 | ||||
|     def load_model(self, model_name): | ||||
|         model = load_model(model_name, compile=False) | ||||
|         model_height = model.layers[len(model.layers)-1].output_shape[1] | ||||
|         model_width = model.layers[len(model.layers)-1].output_shape[2] | ||||
|         n_classes = model.layers[len(model.layers)-1].output_shape[3] | ||||
|     def load_model(self, model_path: str): | ||||
|         model = load_model(model_path, compile=False) | ||||
|         model_height = model.layers[len(model.layers) - 1].output_shape[1] | ||||
|         model_width = model.layers[len(model.layers) - 1].output_shape[2] | ||||
|         n_classes = model.layers[len(model.layers) - 1].output_shape[3] | ||||
|         return model, model_height, model_width, n_classes | ||||
| 
 | ||||
|     def predict(self, model_in, img, use_patches): | ||||
|         tensorflow_backend.set_session(self.session) | ||||
|         model, model_height, model_width, n_classes = model_in | ||||
|          | ||||
| 
 | ||||
|         img_org_h = img.shape[0] | ||||
|         img_org_w = img.shape[1] | ||||
|          | ||||
| 
 | ||||
|         if img.shape[0] < model_height and img.shape[1] >= model_width: | ||||
|             img_padded = np.zeros(( model_height, img.shape[1], img.shape[2] )) | ||||
|              | ||||
|             index_start_h =  int( abs( img.shape[0] - model_height) /2.) | ||||
|             img_padded = np.zeros((model_height, img.shape[1], img.shape[2])) | ||||
| 
 | ||||
|             index_start_h = int(abs(img.shape[0] - model_height) / 2.) | ||||
|             index_start_w = 0 | ||||
|              | ||||
|             img_padded [ index_start_h: index_start_h+img.shape[0], :, : ] = img[:,:,:] | ||||
|              | ||||
| 
 | ||||
|             img_padded[index_start_h: index_start_h + img.shape[0], :, :] = img[:, :, :] | ||||
| 
 | ||||
|         elif img.shape[0] >= model_height and img.shape[1] < model_width: | ||||
|             img_padded = np.zeros(( img.shape[0], model_width, img.shape[2] )) | ||||
|              | ||||
|             index_start_h =  0  | ||||
|             index_start_w = int( abs( img.shape[1] - model_width) /2.) | ||||
|              | ||||
|             img_padded [ :, index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:] | ||||
|              | ||||
|              | ||||
|             img_padded = np.zeros((img.shape[0], model_width, img.shape[2])) | ||||
| 
 | ||||
|             index_start_h = 0 | ||||
|             index_start_w = int(abs(img.shape[1] - model_width) / 2.) | ||||
| 
 | ||||
|             img_padded[:, index_start_w: index_start_w + img.shape[1], :] = img[:, :, :] | ||||
| 
 | ||||
| 
 | ||||
|         elif img.shape[0] < model_height and img.shape[1] < model_width: | ||||
|             img_padded = np.zeros(( model_height, model_width, img.shape[2] )) | ||||
|              | ||||
|             index_start_h =  int( abs( img.shape[0] - model_height) /2.) | ||||
|             index_start_w = int( abs( img.shape[1] - model_width) /2.) | ||||
|              | ||||
|             img_padded [ index_start_h: index_start_h+img.shape[0], index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:] | ||||
|              | ||||
|             img_padded = np.zeros((model_height, model_width, img.shape[2])) | ||||
| 
 | ||||
|             index_start_h = int(abs(img.shape[0] - model_height) / 2.) | ||||
|             index_start_w = int(abs(img.shape[1] - model_width) / 2.) | ||||
| 
 | ||||
|             img_padded[index_start_h: index_start_h + img.shape[0], index_start_w: index_start_w + img.shape[1], :] = img[:, :, :] | ||||
| 
 | ||||
|         else: | ||||
|             index_start_h = 0 | ||||
|             index_start_w  = 0 | ||||
|             index_start_w = 0 | ||||
|             img_padded = np.copy(img) | ||||
|              | ||||
|              | ||||
| 
 | ||||
|         img = np.copy(img_padded) | ||||
|          | ||||
|              | ||||
| 
 | ||||
|         if use_patches: | ||||
| 
 | ||||
|  | @ -109,7 +107,6 @@ class SbbBinarizer: | |||
|             width_mid = model_width - 2 * margin | ||||
|             height_mid = model_height - 2 * margin | ||||
| 
 | ||||
| 
 | ||||
|             img = img / float(255.0) | ||||
| 
 | ||||
|             img_h = img.shape[0] | ||||
|  | @ -169,49 +166,49 @@ class SbbBinarizer: | |||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf-1 and j == nyf-1: | ||||
|                     elif i == nxf - 1 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i == 0 and j == nyf-1: | ||||
|                     elif i == 0 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf-1 and j == 0: | ||||
|                     elif i == nxf - 1 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i == 0 and j != 0 and j != nyf-1: | ||||
|                     elif i == 0 and j != 0 and j != nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf-1 and j != 0 and j != nyf-1: | ||||
|                     elif i == nxf - 1 and j != 0 and j != nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i != 0 and i != nxf-1 and j == 0: | ||||
|                     elif i != 0 and i != nxf - 1 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i != 0 and i != nxf-1 and j == nyf-1: | ||||
|                     elif i != 0 and i != nxf - 1 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|  | @ -224,10 +221,8 @@ class SbbBinarizer: | |||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
|              | ||||
|              | ||||
|              | ||||
|             prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:] | ||||
| 
 | ||||
|             prediction_true = prediction_true[index_start_h: index_start_h + img_org_h, index_start_w: index_start_w + img_org_w, :] | ||||
|             prediction_true = prediction_true.astype(np.uint8) | ||||
| 
 | ||||
|         else: | ||||
|  | @ -242,17 +237,16 @@ class SbbBinarizer: | |||
|             seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
|             prediction_true = resize_image(seg_color, img_h_page, img_w_page) | ||||
|             prediction_true = prediction_true.astype(np.uint8) | ||||
|         return prediction_true[:,:,0] | ||||
|         return prediction_true[:, :, 0] | ||||
| 
 | ||||
|     def run(self, image=None, image_path=None, save=None, use_patches=False): | ||||
|         if (image is not None and image_path is not None) or \ | ||||
|                (image is None and image_path is None): | ||||
|         if (image is not None and image_path is not None) or (image is None and image_path is None): | ||||
|             raise ValueError("Must pass either a opencv2 image or an image_path") | ||||
|         if image_path is not None: | ||||
|             image = cv2.imread(image_path) | ||||
|         img_last = 0 | ||||
|         for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): | ||||
|             self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files))) | ||||
|             self.log.info(f"Predicting with model {model_file} [{n + 1}/{len(self.model_files)}]") | ||||
| 
 | ||||
|             res = self.predict(model, image, use_patches) | ||||
| 
 | ||||
|  | @ -272,5 +266,7 @@ class SbbBinarizer: | |||
|         img_last[:, :][img_last[:, :] > 0] = 255 | ||||
|         img_last = (img_last[:, :] == 0) * 255 | ||||
|         if save: | ||||
|             # Create the output directory (and if necessary it's parents) if it doesn't exist already | ||||
|             Path(save).parent.mkdir(parents=True, exist_ok=True) | ||||
|             cv2.imwrite(save, img_last) | ||||
|         return img_last | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue