|
|
|
@ -17,13 +17,16 @@ from keras.models import load_model
|
|
|
|
|
sys.stderr = stderr
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
import logging
|
|
|
|
|
|
|
|
|
|
def resize_image(img_in, input_height, input_width):
|
|
|
|
|
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
|
|
|
class SbbBinarizer:
|
|
|
|
|
|
|
|
|
|
def __init__(self, model_dir):
|
|
|
|
|
def __init__(self, model_dir, logger=None):
|
|
|
|
|
self.model_dir = model_dir
|
|
|
|
|
self.log = logger if logger else logging.getLogger('SbbBinarizer')
|
|
|
|
|
|
|
|
|
|
def start_new_session(self):
|
|
|
|
|
config = tf.ConfigProto()
|
|
|
|
@ -193,7 +196,8 @@ class SbbBinarizer:
|
|
|
|
|
self.start_new_session()
|
|
|
|
|
list_of_model_files = listdir(self.model_dir)
|
|
|
|
|
img_last = 0
|
|
|
|
|
for model_in in list_of_model_files:
|
|
|
|
|
for n, model_in in enumerate(list_of_model_files):
|
|
|
|
|
self.log.info('Predicting with model %s [%s/%s]' % (model_in, n + 1, len(list_of_model_files)))
|
|
|
|
|
|
|
|
|
|
res = self.predict(model_in, image, use_patches)
|
|
|
|
|
|
|
|
|
|