mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-06-07 19:35:04 +02:00
🐛 typo: comment{,s}, fix #8
This commit is contained in:
parent
d675ffc066
commit
c4b63fca47
2 changed files with 8 additions and 4 deletions
|
@ -57,7 +57,7 @@ class SbbBinarizeProcessor(Processor):
|
||||||
|
|
||||||
oplevel = self.parameter['operation_level']
|
oplevel = self.parameter['operation_level']
|
||||||
model_path = self.parameter['model'] # pylint: disable=attribute-defined-outside-init
|
model_path = self.parameter['model'] # pylint: disable=attribute-defined-outside-init
|
||||||
binarizer = SbbBinarizer(model_dir=model_path)
|
binarizer = SbbBinarizer(model_dir=model_path, logger=LOG)
|
||||||
|
|
||||||
for n, input_file in enumerate(self.input_files):
|
for n, input_file in enumerate(self.input_files):
|
||||||
file_id = make_file_id(input_file, self.output_file_grp)
|
file_id = make_file_id(input_file, self.output_file_grp)
|
||||||
|
@ -77,7 +77,7 @@ class SbbBinarizeProcessor(Processor):
|
||||||
file_id + '.IMG-BIN',
|
file_id + '.IMG-BIN',
|
||||||
page_id=input_file.pageId,
|
page_id=input_file.pageId,
|
||||||
file_grp=self.output_file_grp)
|
file_grp=self.output_file_grp)
|
||||||
page.add_AlternativeImage(AlternativeImageType(filename=bin_image_path, comment='%s,binarized' % page_xywh['features']))
|
page.add_AlternativeImage(AlternativeImageType(filename=bin_image_path, comments='%s,binarized' % page_xywh['features']))
|
||||||
|
|
||||||
elif oplevel == 'region':
|
elif oplevel == 'region':
|
||||||
regions = page.get_AllRegions(['Text', 'Table'], depth=1)
|
regions = page.get_AllRegions(['Text', 'Table'], depth=1)
|
||||||
|
|
|
@ -17,13 +17,16 @@ from keras.models import load_model
|
||||||
sys.stderr = stderr
|
sys.stderr = stderr
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
import logging
|
||||||
|
|
||||||
def resize_image(img_in, input_height, input_width):
|
def resize_image(img_in, input_height, input_width):
|
||||||
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
||||||
|
|
||||||
class SbbBinarizer:
|
class SbbBinarizer:
|
||||||
|
|
||||||
def __init__(self, model_dir):
|
def __init__(self, model_dir, logger=None):
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
|
self.log = logger if logger else logging.getLogger('SbbBinarizer')
|
||||||
|
|
||||||
def start_new_session(self):
|
def start_new_session(self):
|
||||||
config = tf.ConfigProto()
|
config = tf.ConfigProto()
|
||||||
|
@ -193,7 +196,8 @@ class SbbBinarizer:
|
||||||
self.start_new_session()
|
self.start_new_session()
|
||||||
list_of_model_files = listdir(self.model_dir)
|
list_of_model_files = listdir(self.model_dir)
|
||||||
img_last = 0
|
img_last = 0
|
||||||
for model_in in list_of_model_files:
|
for n, model_in in enumerate(list_of_model_files):
|
||||||
|
self.log.info('Predicting with model %s [%s/%s]' % (model_in, n + 1, len(list_of_model_files)))
|
||||||
|
|
||||||
res = self.predict(model_in, image, use_patches)
|
res = self.predict(model_in, image, use_patches)
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue