@ -7,18 +7,10 @@ import sys
import os
import os
import numpy as np
import numpy as np
import warnings
import warnings
import xml . etree . ElementTree as et
import pandas as pd
from tqdm import tqdm
import csv
import cv2
import cv2
import seaborn as sns
import matplotlib . pyplot as plt
from keras . models import load_model
from keras . models import load_model
import tensorflow as tf
import tensorflow as tf
from keras import backend as K
from skimage . filters import threshold_otsu
import keras . losses
with warnings . catch_warnings ( ) :
with warnings . catch_warnings ( ) :
@ -30,147 +22,23 @@ Tool to load model and binarize a given image.
"""
"""
class sbb_binarize :
class sbb_binarize :
def __init__ ( self , image , model , patches = ' false ' , save = None , ground_truth = None , weights_dir = None ) :
def __init__ ( self , image , model , patches = ' false ' , save = None ) :
self . image = image
self . image = image
self . patches = patches
self . patches = patches
self . save = save
self . save = save
self . model_dir = model
self . model_dir = model
self . ground_truth = ground_truth
self . weights_dir = weights_dir
def resize_image ( self , img_in , input_height , input_width ) :
def resize_image ( self , img_in , input_height , input_width ) :
return cv2 . resize ( img_in , ( input_width , input_height ) , interpolation = cv2 . INTER_NEAREST )
return cv2 . resize ( img_in , ( input_width , input_height ) , interpolation = cv2 . INTER_NEAREST )
def color_images ( self , seg ) :
ann_u = range ( self . n_classes )
if len ( np . shape ( seg ) ) == 3 :
seg = seg [ : , : , 0 ]
seg_img = np . zeros ( ( np . shape ( seg ) [ 0 ] , np . shape ( seg ) [ 1 ] , 3 ) ) . astype ( np . uint8 )
colors = sns . color_palette ( " hls " , self . n_classes )
for c in ann_u :
c = int ( c )
segl = ( seg == c )
seg_img [ : , : , 0 ] [ seg == c ] = c
seg_img [ : , : , 1 ] [ seg == c ] = c
seg_img [ : , : , 2 ] [ seg == c ] = c
return seg_img
def otsu_copy_binary ( self , img ) :
img_r = np . zeros ( ( img . shape [ 0 ] , img . shape [ 1 ] , 3 ) )
img1 = img [ : , : , 0 ]
#print(img.min())
#print(img[:,:,0].min())
#blur = cv2.GaussianBlur(img,(5,5))
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
retval1 , threshold1 = cv2 . threshold ( img1 , 0 , 255 , cv2 . THRESH_BINARY + cv2 . THRESH_OTSU )
img_r [ : , : , 0 ] = threshold1
img_r [ : , : , 1 ] = threshold1
img_r [ : , : , 2 ] = threshold1
#img_r=img_r/float(np.max(img_r))*255
return img_r
def otsu_copy ( self , img ) :
img_r = np . zeros ( ( img . shape [ 0 ] , img . shape [ 1 ] , 3 ) )
#img1=img[:,:,0]
#print(img.min())
#print(img[:,:,0].min())
#blur = cv2.GaussianBlur(img,(5,5))
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_ , threshold1 = cv2 . threshold ( img [ : , : , 0 ] , 0 , 255 , cv2 . THRESH_BINARY + cv2 . THRESH_OTSU )
_ , threshold2 = cv2 . threshold ( img [ : , : , 1 ] , 0 , 255 , cv2 . THRESH_BINARY + cv2 . THRESH_OTSU )
_ , threshold3 = cv2 . threshold ( img [ : , : , 2 ] , 0 , 255 , cv2 . THRESH_BINARY + cv2 . THRESH_OTSU )
img_r [ : , : , 0 ] = threshold1
img_r [ : , : , 1 ] = threshold2
img_r [ : , : , 2 ] = threshold3
###img_r=img_r/float(np.max(img_r))*255
return img_r
def otsu_org ( self , img ) :
binary_global = img > threshold_otsu ( img )
binary_global = binary_global * 255
#plt.imshow(binary_sauvola*255,cmap=plt.cm.gray)
#plt.imshow(binary_global)
#plt.show()
#print(np.unique(binary_global))
binary_global = np . repeat ( binary_global [ : , : , np . newaxis ] , 3 , axis = 2 )
plt . imshow ( binary_global )
plt . show ( )
print ( binary_global . shape )
return binary_global
def soft_dice_loss ( self , y_true , y_pred , epsilon = 1e-6 ) :
axes = tuple ( range ( 1 , len ( y_pred . shape ) - 1 ) )
numerator = 2. * K . sum ( y_pred * y_true , axes )
denominator = K . sum ( K . square ( y_pred ) + K . square ( y_true ) , axes )
return 1.00 - K . mean ( numerator / ( denominator + epsilon ) ) # average over classes and batch
def weighted_categorical_crossentropy ( self , weights = None ) :
def loss ( y_true , y_pred ) :
labels_floats = tf . cast ( y_true , tf . float32 )
per_pixel_loss = tf . nn . sigmoid_cross_entropy_with_logits ( labels = labels_floats , logits = y_pred )
if weights is not None :
weight_mask = tf . maximum ( tf . reduce_max ( tf . constant (
np . array ( weights , dtype = np . float32 ) [ None , None , None ] )
* labels_floats , axis = - 1 ) , 1.0 )
per_pixel_loss = per_pixel_loss * weight_mask [ : , : , : , None ]
return tf . reduce_mean ( per_pixel_loss )
return self . loss
def IoU ( self , Yi , y_predi ) :
## mean Intersection over Union
## Mean IoU = TP/(FN + TP + FP)
IoUs = [ ]
Nclass = np . unique ( Yi )
for c in Nclass :
TP = np . sum ( ( Yi == c ) & ( y_predi == c ) )
FP = np . sum ( ( Yi != c ) & ( y_predi == c ) )
FN = np . sum ( ( Yi == c ) & ( y_predi != c ) )
IoU = TP / float ( TP + FP + FN )
if self . n_classes > 2 :
print ( " class {:02.0f} : #TP= {:6.0f} , #FP= {:6.0f} , #FN= {:5.0f} , IoU= {:4.3f} " . format ( c , TP , FP , FN , IoU ) )
IoUs . append ( IoU )
if self . n_classes > 2 :
mIoU = np . mean ( IoUs )
print ( " _________________ " )
print ( " Mean IoU: {:4.3f} " . format ( mIoU ) )
return mIoU
elif self . n_classes == 2 :
mIoU = IoUs [ 1 ]
print ( " _________________ " )
print ( " IoU: {:4.3f} " . format ( mIoU ) )
return mIoU
def start_new_session_and_model ( self ) :
def start_new_session_and_model ( self ) :
config = tf . ConfigProto ( )
config = tf . ConfigProto ( )
config . gpu_options . allow_growth = True
config . gpu_options . allow_growth = True
self . session = tf . Session ( config = config ) # tf.InteractiveSession()
self . session = tf . Session ( config = config ) # tf.InteractiveSession()
#keras.losses.custom_loss = self.weighted_categorical_crossentropy
def load_model ( self , model_name ) :
def load_model ( self , model_name ) :
self . model = load_model ( self . model_dir + ' / ' + model_name , compile = False )
self . model = load_model ( self . model_dir + ' / ' + model_name , compile = False )
#if self.weights_dir!=None:
# print('man burdayammmmaaa')
# self.model.load_weights(self.weights_dir)
self . img_height = self . model . layers [ len ( self . model . layers ) - 1 ] . output_shape [ 1 ]
self . img_height = self . model . layers [ len ( self . model . layers ) - 1 ] . output_shape [ 1 ]
self . img_width = self . model . layers [ len ( self . model . layers ) - 1 ] . output_shape [ 2 ]
self . img_width = self . model . layers [ len ( self . model . layers ) - 1 ] . output_shape [ 2 ]
@ -183,51 +51,20 @@ class sbb_binarize:
del self . model
del self . model
del self . session
del self . session
def predict ( self , model_name ) :
def predict ( self , model_name ) :
#self.start_new_session_and_model(model_name)
self . load_model ( model_name )
self . load_model ( model_name )
if self . patches == ' true ' or self . patches == ' True ' :
print ( self . patches , ' gadaaiikk ' )
#def textline_contours(img,input_width,input_height,n_classes,model):
img = cv2 . imread ( self . image )
img = cv2 . imread ( self . image )
img_width_model = self . img_width
img_height_model = self . img_height
if self . patches == ' true ' or self . patches == ' True ' :
margin = int ( 0.1 * img_width_model )
if img . shape [ 0 ] < self . img_height :
width_mid = img_width_model - 2 * margin
img = cv2 . resize ( img , ( img . shape [ 1 ] , self . img_width ) , interpolation = cv2 . INTER_NEAREST )
height_mid = img_height_model - 2 * margin
if img . shape [ 1 ] < self . img_width :
img = cv2 . resize ( img , ( self . img_height , img . shape [ 0 ] ) , interpolation = cv2 . INTER_NEAREST )
margin = True
if margin :
kernel = np . ones ( ( 5 , 5 ) , np . uint8 )
width = self . img_width
height = self . img_height
#offset=int(.1*width)
offset = int ( 0.1 * width )
width_mid = width - 2 * offset
height_mid = height - 2 * offset
#img= cv2.medianBlur(img, 5)
#img = cv2.GaussianBlur(img,(5,5),0)
#img= cv2.medianBlur(img, 5)
#img= cv2.medianBlur(img, 5)
#img= cv2.medianBlur(img, 5)
#img= cv2.medianBlur(img, 5)
#img=self.otsu_copy_binary(img)
#img=self.otsu_org(img)
img = img . astype ( np . uint8 )
#for i in range(10):
# img= cv2.medianBlur(img, 3)
img = img / 255.0
img = img / float ( 255.0 )
img_h = img . shape [ 0 ]
img_h = img . shape [ 0 ]
img_w = img . shape [ 1 ]
img_w = img . shape [ 1 ]
@ -252,218 +89,132 @@ class sbb_binarize:
if i == 0 :
if i == 0 :
index_x_d = i * width_mid
index_x_d = i * width_mid
index_x_u = index_x_d + width #(i+1)*width
index_x_u = index_x_d + img_width_model
elif i > 0 :
elif i > 0 :
index_x_d = i * width_mid
index_x_d = i * width_mid
index_x_u = index_x_d + width #(i+1)*width
index_x_u = index_x_d + img_width_model
if j == 0 :
if j == 0 :
index_y_d = j * height_mid
index_y_d = j * height_mid
index_y_u = index_y_d + height #(j+1)*height
index_y_u = index_y_d + img_height_model
elif j > 0 :
elif j > 0 :
index_y_d = j * height_mid
index_y_d = j * height_mid
index_y_u = index_y_d + height #(j+1)*height
index_y_u = index_y_d + img_height_model
if index_x_u > img_w :
if index_x_u > img_w :
index_x_u = img_w
index_x_u = img_w
index_x_d = img_w - width
index_x_d = img_w - img_ width_model
if index_y_u > img_h :
if index_y_u > img_h :
index_y_u = img_h
index_y_u = img_h
index_y_d = img_h - height
index_y_d = img_h - img_ height_model
img_patch = img [ index_y_d : index_y_u , index_x_d : index_x_u , : ]
img_patch = img [ index_y_d : index_y_u , index_x_d : index_x_u , : ]
label_p_pred = self . model . predict (
label_p_pred = self . model . predict (
img_patch . reshape ( 1 , img_patch . shape [ 0 ] , img_patch . shape [ 1 ] , img_patch . shape [ 2 ] ) )
img_patch . reshape ( 1 , img_patch . shape [ 0 ] , img_patch . shape [ 1 ] , img_patch . shape [ 2 ] ) )
#print(np.unique(label_p_pred))
th3 = label_p_pred [ 0 , : , : , 1 ]
th3 = th3 * 255
th3 = th3 . astype ( np . uint8 )
#print(np.unique(th3))
ret3 , th3 = cv2 . threshold ( th3 , 30 , 250 , cv2 . THRESH_BINARY + cv2 . THRESH_OTSU )
seg = np . argmax ( label_p_pred , axis = 3 ) [ 0 ]
seg = np . argmax ( label_p_pred , axis = 3 ) [ 0 ]
seg_color = self . color_images ( seg )
seg_color = np . repeat ( seg [ : , : , np . newaxis ] , 3 , axis = 2 )
seg_color = seg_color [ offset : seg_color . shape [ 0 ] - offset , offset : seg_color . shape [ 1 ] - offset , : ]
if i == 0 and j == 0 :
seg = seg [ offset : seg . shape [ 0 ] - offset , offset : seg . shape [ 1 ] - offset ]
seg_color = seg_color [ 0 : seg_color . shape [ 0 ] - margin , 0 : seg_color . shape [ 1 ] - margin , : ]
th3= th3 [ offset : th3 . shape [ 0 ] - offset , offset : th3 . shape [ 1 ] - offset ]
seg = seg [ 0 : seg . shape [ 0 ] - margin , 0 : seg . shape [ 1 ] - margin ]
mask_true [ index_y_d + offset : index_y_u - offset , index_x_d + offset : index_x_u - offset ] = seg
mask_true [ index_y_d + 0 : index_y_u - margin , index_x_d + 0 : index_x_u - margin ] = seg
prediction_true [ index_y_d + offset : index_y_u - offset , index_x_d + offset : index_x_u - offset , : ] = seg_color
prediction_true [ index_y_d + 0 : index_y_u - margin , index_x_d + 0 : index_x_u - margin ,
: ] = seg_color
y_predi = mask_true
elif i == nxf - 1 and j == nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - 0 , margin : seg_color . shape [ 1 ] - 0 , : ]
seg = seg [ margin : seg . shape [ 0 ] - 0 , margin : seg . shape [ 1 ] - 0 ]
#print(np.unique(mask_true))
mask_true [ index_y_d + margin : index_y_u - 0 , index_x_d + margin : index_x_u - 0 ] = seg
#find_contours(mask_true)
prediction_true [ index_y_d + margin : index_y_u - 0 , index_x_d + margin : index_x_u - 0 ,
: ] = seg_color
#y_testi = label[:,:,0]#np.argmax(label.reshape(1,label.shape[0],label.shape[1],label.shape[2]), axis=3)
elif i == 0 and j == nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - 0 , 0 : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ margin : seg . shape [ 0 ] - 0 , 0 : seg . shape [ 1 ] - margin ]
mask_true [ index_y_d + margin : index_y_u - 0 , index_x_d + 0 : index_x_u - margin ] = seg
prediction_true [ index_y_d + margin : index_y_u - 0 , index_x_d + 0 : index_x_u - margin ,
: ] = seg_color
elif i == nxf - 1 and j == 0 :
seg_color = seg_color [ 0 : seg_color . shape [ 0 ] - margin , margin : seg_color . shape [ 1 ] - 0 , : ]
seg = seg [ 0 : seg . shape [ 0 ] - margin , margin : seg . shape [ 1 ] - 0 ]
#y_predi=cv2.erode(y_predi,kernel,iterations=3)
mask_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - 0 ] = seg
y_predi = cv2 . resize ( y_predi , ( img . shape [ 1 ] , img . shape [ 0 ] ) , interpolation = cv2 . INTER_NEAREST )
prediction_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - 0 ,
return y_predi
: ] = seg_color
elif i == 0 and j != 0 and j != nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - margin , 0 : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ margin : seg . shape [ 0 ] - margin , 0 : seg . shape [ 1 ] - margin ]
if not margin :
mask_true [ index_y_d + margin : index_y_u - margin , index_x_d + 0 : index_x_u - margin ] = seg
prediction_true [ index_y_d + margin : index_y_u - margin , index_x_d + 0 : index_x_u - margin ,
kernel = np . ones ( ( 5 , 5 ) , np . uint8 )
: ] = seg_color
width = self . img_width
height = self . img_height
#img = cv2.medianBlur(img,5)
img = self . otsu_copy_binary ( img )
#img=cv2.bilateralFilter(img,9,75,75)
img = cv2 . GaussianBlur ( img , ( 5 , 5 ) , 0 )
elif i == nxf - 1 and j != 0 and j != nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - margin , margin : seg_color . shape [ 1 ] - 0 , : ]
seg = seg [ margin : seg . shape [ 0 ] - margin , margin : seg . shape [ 1 ] - 0 ]
mask_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - 0 ] = seg
prediction_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - 0 ,
: ] = seg_color
img = img / 255.0
elif i != 0 and i != nxf - 1 and j == 0 :
seg_color = seg_color [ 0 : seg_color . shape [ 0 ] - margin , margin : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ 0 : seg . shape [ 0 ] - margin , margin : seg . shape [ 1 ] - margin ]
mask_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - margin ] = seg
prediction_true [ index_y_d + 0 : index_y_u - margin , index_x_d + margin : index_x_u - margin ,
: ] = seg_color
elif i != 0 and i != nxf - 1 and j == nyf - 1 :
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - 0 , margin : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ margin : seg . shape [ 0 ] - 0 , margin : seg . shape [ 1 ] - margin ]
img_h = img . shape [ 0 ]
mask_true [ index_y_d + margin : index_y_u - 0 , index_x_d + margin : index_x_u - margin ] = seg
img_w = img . shape [ 1 ]
prediction_true [ index_y_d + margin : index_y_u - 0 , index_x_d + margin : index_x_u - margin ,
: ] = seg_color
prediction_true = np . zeros ( ( img_h , img_w , 3 ) )
mask_true = np . zeros ( ( img_h , img_w ) )
nxf = img_w / float ( width )
nyf = img_h / float ( height )
if nxf > int ( nxf ) :
nxf = int ( nxf ) + 1
else :
nxf = int ( nxf )
if nyf > int ( nyf ) :
nyf = int ( nyf ) + 1
else :
else :
nyf = int ( nyf )
seg_color = seg_color [ margin : seg_color . shape [ 0 ] - margin , margin : seg_color . shape [ 1 ] - margin , : ]
seg = seg [ margin : seg . shape [ 0 ] - margin , margin : seg . shape [ 1 ] - margin ]
print ( nxf , nyf )
for i in range ( nxf ) :
for j in range ( nyf ) :
index_x_d = i * width
index_x_u = ( i + 1 ) * width
index_y_d = j * height
index_y_u = ( j + 1 ) * height
if index_x_u > img_w :
index_x_u = img_w
index_x_d = img_w - width
if index_y_u > img_h :
index_y_u = img_h
index_y_d = img_h - height
img_patch = img [ index_y_d : index_y_u , index_x_d : index_x_u , : ]
label_p_pred = self . model . predict ( img_patch . reshape ( 1 , img_patch . shape [ 0 ] , img_patch . shape [ 1 ] , img_patch . shape [ 2 ] ) )
seg = np . argmax ( label_p_pred , axis = 3 ) [ 0 ]
seg_color = self . color_images ( seg )
###seg_color=color_images_diva(seg,n_classes)
mask_true [ index_y_d : index_y_u , index_x_d : index_x_u ] = seg
prediction_true [ index_y_d : index_y_u , index_x_d : index_x_u , : ] = seg_color
mask_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - margin ] = seg
prediction_true [ index_y_d + margin : index_y_u - margin , index_x_d + margin : index_x_u - margin ,
: ] = seg_color
prediction_true = prediction_true . astype ( np . uint8 )
else :
#mask_true=color_images(mask_true,n_classes)
img_h_page = img . shape [ 0 ]
y_predi = mask_true
img_w_page = img . shape [ 1 ]
img = img / float ( 255.0 )
#print(np.unique(mask_true))
img = self . resize_image ( img , img_height_model , img_width_model )
#find_contours(mask_true)
#y_testi = label[:,:,0]#np.argmax(label.reshape(1,label.shape[0],label.shape[1],label.shape[2]), axis=3)
#y_predi=cv2.erode(y_predi,kernel,iterations=3)
y_predi = cv2 . resize ( y_predi , ( img . shape [ 1 ] , img . shape [ 0 ] ) , interpolation = cv2 . INTER_NEAREST )
#self.end_session()
return y_predi
#def extract_page(img,input_width,input_height,n_classes,model):
if self . patches == ' false ' or self . patches == ' False ' :
img = cv2 . imread ( self . image , 0 )
img_org_height = img . shape [ 0 ]
img_org_width = img . shape [ 1 ]
#kernel = np.ones((5,5),np.uint8)
width = self . img_width
height = self . img_height
#for _ in range(1):
#img = cv2.medianBlur(img,5)
img = self . otsu_org ( img )
#img=img.astype(np.uint8)
img = img . astype ( np . uint8 )
#img = cv2.medianBlur(img,5)
#img=img.astype(np.uint8)
#img = cv2.GaussianBlur(img,(5,5),0)
#img=self.otsu_copy_binary(img)
img = img . astype ( np . uint8 )
img = img / 255.0
img = self . resize_image ( img , self . img_height , self . img_width )
label_p_pred = self . model . predict (
label_p_pred = self . model . predict (
img . reshape ( 1 , img . shape [ 0 ] , img . shape [ 1 ] , img . shape [ 2 ] ) )
img . reshape ( 1 , img . shape [ 0 ] , img . shape [ 1 ] , img . shape [ 2 ] ) )
seg = np . argmax ( label_p_pred , axis = 3 ) [ 0 ]
seg = np . argmax ( label_p_pred , axis = 3 ) [ 0 ]
print ( np . shape ( seg ) , np . unique ( seg ) )
seg_color = np . repeat ( seg [ : , : , np . newaxis ] , 3 , axis = 2 )
prediction_true = self . resize_image ( seg_color , img_h_page , img_w_page )
plt . imshow ( seg * 255 )
prediction_true = prediction_true . astype ( np . uint8 )
plt . show ( )
return prediction_true [ : , : , 0 ]
seg_color = self . color_images ( seg )
print ( np . unique ( seg_color ) )
#imgs = seg_color#/np.max(seg_color)*255#np.repeat(seg_color[:, :, np.newaxis], 3, axis=2)
y_predi = cv2 . resize ( seg_color , ( img_org_width , img_org_height ) , interpolation = cv2 . INTER_NEAREST )
return y_predi
def run ( self ) :
def run ( self ) :
self . start_new_session_and_model ( )
self . start_new_session_and_model ( )
models_n = os . listdir ( self . model_dir )
models_n = os . listdir ( self . model_dir )
img_last = 0
img_last = 0
for model_in in models_n :
for model_in in models_n :
res = self . predict ( model_in )
res = self . predict ( model_in )
if self . ground_truth != None :
gt_img = cv2 . imread ( self . ground_truth )
print ( np . shape ( gt_img ) , np . shape ( res ) )
#self.IoU(gt_img[:,:,0],res)
#print(np.unique(res))
img_fin = np . zeros ( ( res . shape [ 0 ] , res . shape [ 1 ] , 3 ) )
img_fin = np . zeros ( ( res . shape [ 0 ] , res . shape [ 1 ] , 3 ) )
res [ : , : ] [ res [ : , : ] == 0 ] = 2
res [ : , : ] [ res [ : , : ] == 0 ] = 2
@ -479,24 +230,21 @@ class sbb_binarize:
kernel = np . ones ( ( 5 , 5 ) , np . uint8 )
kernel = np . ones ( ( 5 , 5 ) , np . uint8 )
img_last [ : , : ] [ img_last [ : , : ] > 0 ] = 255
img_last [ : , : ] [ img_last [ : , : ] > 0 ] = 255
img_last = ( img_last [ : , : ] == 0 ) * 255
img_last = ( img_last [ : , : ] == 0 ) * 255
#img_fin= cv2.medianBlur(img_fin, 5)
if self . save is not None :
if self . save is not None :
cv2 . imwrite ( ' ./ ' + self . save , img_last )
cv2 . imwrite ( self . save , img_last )
def main ( ) :
def main ( ) :
parser = argparse . ArgumentParser ( )
parser = argparse . ArgumentParser ( )
parser . add_argument ( ' -i ' , ' --image ' , dest = ' inp1 ' , default = None , help = ' directory of alto files which have to be transformed. ' )
parser . add_argument ( ' -i ' , ' --image ' , dest = ' inp1 ' , default = None , help = ' image. ' )
parser . add_argument ( ' -p ' , ' --patches ' , dest = ' inp3 ' , default = False , help = ' use patches of image for prediction or should image resize be applied to be fit for model. this parameter should be true or false ' )
parser . add_argument ( ' -p ' , ' --patches ' , dest = ' inp3 ' , default = False , help = ' by setting this parameter to true you let the model to see the image in patches. ' )
parser . add_argument ( ' -s ' , ' --save ' , dest = ' inp4 ' , default = False , help = ' save prediction with agive name in the same directory you are. The name and format should be given (0045.tif). ' )
parser . add_argument ( ' -s ' , ' --save ' , dest = ' inp4 ' , default = False , help = ' save prediction with a given name here. The name and format should be given (outputname.tif). ' )
parser . add_argument ( ' -m ' , ' --model ' , dest = ' inp2 ' , default = None , help = ' model directory and name should be provided here. ' )
parser . add_argument ( ' -m ' , ' --model ' , dest = ' inp2 ' , default = None , help = ' models directory. ' )
parser . add_argument ( ' -gt ' , ' --groundtruth ' , dest = ' inp5 ' , default = None , help = ' ground truth directory if you want to see the iou of prediction. ' )
parser . add_argument ( ' -mw ' , ' --model_weights ' , dest = ' inp6 ' , default = None , help = ' previous model weights which are saved. ' )
options = parser . parse_args ( )
options = parser . parse_args ( )
possibles = globals ( )
possibles = globals ( )
possibles . update ( locals ( ) )
possibles . update ( locals ( ) )
x = sbb_binarize ( options . inp1 , options . inp2 , options . inp3 , options . inp4 ,options . inp5 , options . inp6 )
x = sbb_binarize ( options . inp1 , options . inp2 , options . inp3 , options . inp4 )
x . run ( )
x . run ( )
if __name__ == " __main__ " :
if __name__ == " __main__ " :