hybrid cnn & transformer model is integrated

transformer_model_integration
vahid 2 years ago
parent e4c1eb2913
commit ffdc776192

@ -2,4 +2,4 @@ numpy
setuptools >= 41
opencv-python-headless
ocrd >= 2.22.3
tensorflow >= 2.4.0
tensorflow == 2.4.*

@ -1,7 +1,7 @@
"""
sbb_binarize CLI
"""
import click
from click import command, option, argument, version_option, types
from .sbb_binarize import SbbBinarizer

@ -17,14 +17,72 @@ sys.stderr = open(devnull, 'w')
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.python.keras import backend as tensorflow_backend
from tensorflow.keras import layers
import tensorflow.keras.losses
from tensorflow.keras.layers import *
sys.stderr = stderr
import logging
projection_dim = 64
patch_size = 1
num_patches =14*14
def resize_image(img_in, input_height, input_width):
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
class Patches(layers.Layer):
def __init__(self, **kwargs):
super(Patches, self).__init__()
self.patch_size = patch_size
def call(self, images):
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size, self.patch_size, 1],
strides=[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
patch_dims = patches.shape[-1]
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
def get_config(self):
config = super().get_config().copy()
config.update({
'patch_size': self.patch_size,
})
return config
class PatchEncoder(layers.Layer):
def __init__(self, **kwargs):
super(PatchEncoder, self).__init__()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
def get_config(self):
config = super().get_config().copy()
config.update({
'num_patches': self.num_patches,
'projection': self.projection,
'position_embedding': self.position_embedding,
})
return config
class SbbBinarizer:
def __init__(self, model_dir, logger=None):
@ -52,7 +110,10 @@ class SbbBinarizer:
del self.session
def load_model(self, model_name):
try:
model = load_model(join(self.model_dir, model_name), compile=False)
except:
model = load_model(join(self.model_dir, model_name) , compile=False,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
model_height = model.layers[len(model.layers)-1].output_shape[1]
model_width = model.layers[len(model.layers)-1].output_shape[2]
n_classes = model.layers[len(model.layers)-1].output_shape[3]
@ -154,11 +215,46 @@ class SbbBinarizer:
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
h_res = int( img_patch.shape[0]/1.05)
w_res = int( img_patch.shape[1]/1.05)
img_patch_resize = resize_image(img_patch, h_res, w_res)
img_patch_resized_padded =np.ones((img_patch.shape[0],img_patch.shape[1],img_patch.shape[2])).astype(float)#self.do_padding()
h_start=int( abs(img_patch.shape[0]-img_patch_resize.shape[0])/2. )
w_start=int( abs(img_patch.shape[1]-img_patch_resize.shape[1])/2. )
img_patch_resized_padded[h_start:h_start+img_patch_resize.shape[0],w_start:w_start+img_patch_resize.shape[1],:]=np.copy(img_patch_resize[:,:,:])
label_p_pred_padded = model.predict(img_patch_resized_padded.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
#seg = np.argmax(label_p_pred, axis=3)[0]
#label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
seg = np.argmax(label_p_pred, axis=3)[0]
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
seg_padded = np.argmax(label_p_pred_padded, axis=3)[0]
seg_padded_take_core = seg_padded[h_start:h_start+img_patch_resize.shape[0],w_start:w_start+img_patch_resize.shape[1]]
seg_padded_take_core_org_size= resize_image(seg_padded_take_core, img_patch.shape[0], img_patch.shape[1])
#print(seg_padded_take_core_org_size,'sag padded')
#print(seg,'sag')
seg_tot = seg_padded_take_core_org_size+0#seg
seg_tot[seg_tot>1]=1
seg_color = np.repeat(seg_tot[:, :, np.newaxis], 3, axis=2)
#seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
if i == 0 and j == 0:
seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]

Loading…
Cancel
Save