No description
Find a file
Clemens Neudecker 42bca1441c
Update README.md
2023-04-14 00:51:13 +02:00
.circleci make git submodule update depend on subdir 2023-04-13 21:12:34 +02:00
.github/workflows make git submodule update depend on subdir 2023-04-13 21:12:34 +02:00
repo add assets subrepo 2020-10-15 17:31:47 +02:00
sbb_binarize standalone cv2.imwrite: use uint8 / bilevel 2023-04-13 12:54:02 +02:00
.gitignore 📦 v0.0.2 2020-10-23 17:09:54 +02:00
.gitkeep Add new directory, you can find corresponding models in qurator-data 2019-08-23 15:47:32 +02:00
.gitmodules add assets subrepo 2020-10-15 17:31:47 +02:00
CHANGELOG.md update changelog 2023-04-13 12:55:07 +02:00
LICENSE Add LICENSE 2019-12-10 16:40:44 +01:00
make.sh Add new file 2019-08-23 15:50:09 +02:00
Makefile make git submodule update depend on subdir 2023-04-13 21:12:34 +02:00
ocrd-tool.json add ocrd-tool.json 2020-10-15 15:19:04 +02:00
README.md Update README.md 2023-04-14 00:51:13 +02:00
requirements.txt Update requirements.txt 2022-10-11 17:20:31 +02:00
setup.py fix standalone CLI version_option 2023-04-13 11:07:10 +02:00

sbb_binarization

Document Image Binarization using pre-trained models

pip release CircleCI test GHActions Tests

Examples

Installation

Python versions 3.7-3.10 are currently supported.

You can either install via

pip install sbb-binarization

or clone the repository, enter it and install (editable) with

git clone git@github.com:qurator-spk/sbb_binarization.git
cd sbb_binarization; pip install -e .

Models

Pre-trained models can be downloaded from the locations below. We also provide the models and model card on 🤗

Version Format Download
2021-03-09 SavedModel https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip
2021-03-09 HDF5 https://qurator-data.de/sbb_binarization/2021-03-09/models.tar.gz
2020-01-16 SavedModel https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2020_01_16.zip
2020-01-16 HDF5 https://qurator-data.de/sbb_binarization/2020-01-16/models.tar.gz

With OCR-D, you can use the Resource Manager to deploy models, e.g.

ocrd resmgr download ocrd-sbb-binarize "*"

Usage

sbb_binarize \
  -m <path to directory containing model files> \
  <input image> \
  <output image>

Note: the output image MUST use either .tif or .png as file extension to produce a binary image. Input images can also be JPEG.

Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results.

Example

sbb_binarize -m /path/to/model/ myimage.tif myimage-bin.tif

To use the OCR-D interface:

ocrd-sbb-binarize -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model default

Testing

For simple smoke tests, the following will

  • download models

  • download test data

  • run the OCR-D wrapper (on page and region level):

      make models
      make test