mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-06-09 04:10:00 +02:00
No description
.circleci | ||
repo | ||
sbb_binarize | ||
.gitignore | ||
.gitkeep | ||
.gitmodules | ||
CHANGELOG.md | ||
LICENSE | ||
make.sh | ||
Makefile | ||
ocrd-tool.json | ||
README.md | ||
requirements.txt | ||
setup.py |
Binarization
Binarization for document images
Examples
Introduction
This tool performs document image binarization using a trained ResNet50-UNet model.
Installation
Clone the repository, enter it and run
pip install .
Models
Pre-trained models in HDF5
format can be downloaded from here:
https://qurator-data.de/sbb_binarization/
We also provide a Tensorflow saved_model
via Huggingface:
https://huggingface.co/SBB/sbb_binarization
Usage
sbb_binarize \
-m <path to directory containing model files> \
<input image> \
<output image>
Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results.
Example
sbb_binarize -m /path/to/models/ myimage.tif myimage-bin.tif
To use the OCR-D interface:
ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"