mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-10-26 15:14:13 +01:00
No description
|
|
||
|---|---|---|
| .circleci | ||
| repo | ||
| sbb_binarize | ||
| .gitignore | ||
| .gitkeep | ||
| .gitmodules | ||
| CHANGELOG.md | ||
| LICENSE | ||
| make.sh | ||
| Makefile | ||
| ocrd-tool.json | ||
| README.md | ||
| requirements.txt | ||
| setup.py | ||
Binarization
Binarization for document images
Examples




Introduction
This tool performs document image binarization (i.e. transform colour/grayscale to black-and-white pixels) for OCR using multiple trained models.
The method used is based on Calvo-Zaragoza/Gallego, 2018. A selectional auto-encoder approach for document image binarization.
Installation
Clone the repository, enter it and run
pip install .
Models
Pre-trained models can be downloaded from here:
https://qurator-data.de/sbb_binarization/
Usage
sbb_binarize \
--patches \
-m <directory with models> \
<input image> \
<output image>
Note In virtually all cases, the --patches flag will improve results.
To use the OCR-D interface:
ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"