You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
10 KiB
Python
256 lines
10 KiB
Python
#! /usr/bin/env python3
|
|
|
|
__version__= '1.0'
|
|
|
|
import argparse
|
|
import sys
|
|
import os
|
|
import numpy as np
|
|
import warnings
|
|
import cv2
|
|
from keras.models import load_model
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
|
|
__doc__=\
|
|
"""
|
|
Tool to load model and binarize a given image.
|
|
"""
|
|
|
|
class sbb_binarize:
|
|
def __init__(self,image,model, patches='false',save=None ):
|
|
self.image=image
|
|
self.patches=patches
|
|
self.save=save
|
|
self.model_dir=model
|
|
|
|
def resize_image(self,img_in,input_height,input_width):
|
|
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
|
|
|
def start_new_session_and_model(self):
|
|
config = tf.ConfigProto()
|
|
config.gpu_options.allow_growth=True
|
|
|
|
self.session =tf.Session(config=config)# tf.InteractiveSession()
|
|
def load_model(self,model_name):
|
|
self.model = load_model(self.model_dir+'/'+model_name , compile=False)
|
|
|
|
|
|
self.img_height=self.model.layers[len(self.model.layers)-1].output_shape[1]
|
|
self.img_width=self.model.layers[len(self.model.layers)-1].output_shape[2]
|
|
self.n_classes=self.model.layers[len(self.model.layers)-1].output_shape[3]
|
|
|
|
def end_session(self):
|
|
self.session.close()
|
|
|
|
|
|
del self.model
|
|
del self.session
|
|
def predict(self,model_name):
|
|
self.load_model(model_name)
|
|
img=cv2.imread(self.image)
|
|
img_width_model=self.img_width
|
|
img_height_model=self.img_height
|
|
|
|
if self.patches=='true' or self.patches=='True':
|
|
|
|
margin = int(0.1 * img_width_model)
|
|
|
|
width_mid = img_width_model - 2 * margin
|
|
height_mid = img_height_model - 2 * margin
|
|
|
|
|
|
img = img / float(255.0)
|
|
|
|
img_h = img.shape[0]
|
|
img_w = img.shape[1]
|
|
|
|
prediction_true = np.zeros((img_h, img_w, 3))
|
|
mask_true = np.zeros((img_h, img_w))
|
|
nxf = img_w / float(width_mid)
|
|
nyf = img_h / float(height_mid)
|
|
|
|
if nxf > int(nxf):
|
|
nxf = int(nxf) + 1
|
|
else:
|
|
nxf = int(nxf)
|
|
|
|
if nyf > int(nyf):
|
|
nyf = int(nyf) + 1
|
|
else:
|
|
nyf = int(nyf)
|
|
|
|
for i in range(nxf):
|
|
for j in range(nyf):
|
|
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + img_width_model
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + img_width_model
|
|
|
|
if j == 0:
|
|
index_y_d = j * height_mid
|
|
index_y_u = index_y_d + img_height_model
|
|
elif j > 0:
|
|
index_y_d = j * height_mid
|
|
index_y_u = index_y_d + img_height_model
|
|
|
|
if index_x_u > img_w:
|
|
index_x_u = img_w
|
|
index_x_d = img_w - img_width_model
|
|
if index_y_u > img_h:
|
|
index_y_u = img_h
|
|
index_y_d = img_h - img_height_model
|
|
|
|
|
|
|
|
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
|
|
label_p_pred = self.model.predict(
|
|
img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
if i==0 and j==0:
|
|
seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
|
seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i==nxf-1 and j==nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
|
|
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0,
|
|
:] = seg_color
|
|
|
|
elif i==0 and j==nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i==nxf-1 and j==0:
|
|
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
|
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
|
|
|
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
|
:] = seg_color
|
|
|
|
elif i==0 and j!=0 and j!=nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i==nxf-1 and j!=0 and j!=nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
|
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
|
:] = seg_color
|
|
|
|
elif i!=0 and i!=nxf-1 and j==0:
|
|
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
|
|
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i!=0 and i!=nxf-1 and j==nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
else:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
else:
|
|
img_h_page=img.shape[0]
|
|
img_w_page=img.shape[1]
|
|
img = img /float( 255.0)
|
|
img = self.resize_image(img, img_height_model, img_width_model)
|
|
|
|
label_p_pred = self.model.predict(
|
|
img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
seg_color =np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
prediction_true = self.resize_image(seg_color, img_h_page, img_w_page)
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
return prediction_true[:,:,0]
|
|
|
|
def run(self):
|
|
self.start_new_session_and_model()
|
|
models_n=os.listdir(self.model_dir)
|
|
img_last=0
|
|
for model_in in models_n:
|
|
|
|
res=self.predict(model_in)
|
|
|
|
img_fin=np.zeros((res.shape[0],res.shape[1],3) )
|
|
res[:,:][res[:,:]==0]=2
|
|
res=res-1
|
|
res=res*255
|
|
img_fin[:,:,0]=res
|
|
img_fin[:,:,1]=res
|
|
img_fin[:,:,2]=res
|
|
|
|
img_fin=img_fin.astype(np.uint8)
|
|
img_fin=(res[:,:]==0)*255
|
|
img_last=img_last+img_fin
|
|
kernel = np.ones((5,5),np.uint8)
|
|
img_last[:,:][img_last[:,:]>0]=255
|
|
img_last=(img_last[:,:]==0)*255
|
|
if self.save is not None:
|
|
cv2.imwrite(self.save,img_last)
|
|
def main():
|
|
parser=argparse.ArgumentParser()
|
|
|
|
parser.add_argument('-i','--image', dest='inp1', default=None, help='image.')
|
|
parser.add_argument('-p','--patches', dest='inp3', default=False, help='by setting this parameter to true you let the model to see the image in patches.')
|
|
parser.add_argument('-s','--save', dest='inp4', default=False, help='save prediction with a given name here. The name and format should be given (outputname.tif).')
|
|
parser.add_argument('-m','--model', dest='inp2', default=None, help='models directory.')
|
|
|
|
options=parser.parse_args()
|
|
|
|
possibles=globals()
|
|
possibles.update(locals())
|
|
x=sbb_binarize(options.inp1,options.inp2,options.inp3,options.inp4)
|
|
x.run()
|
|
|
|
if __name__=="__main__":
|
|
main()
|
|
|
|
|
|
|
|
|