No description
Find a file
2020-02-20 16:49:54 +01:00
qurator getting robust and doing sth for verticals 2019-12-13 18:04:04 +01:00
.gitignore Revert "Merge branch 'master' of https://github.com/qurator-spk/sbb_textline_detector" 2019-12-09 15:11:25 +01:00
.gitkeep 🧹 sbb_textline_docker: Rename to sbb_textline_detector 2019-10-10 16:13:07 +02:00
Dockerfile 🧹 sbb_textline_detector: Use same structure as the other projects 2019-10-10 16:24:28 +02:00
LICENSE Revert "Merge branch 'master' of https://github.com/qurator-spk/sbb_textline_detector" 2019-12-09 15:11:25 +01:00
ocrd-tool.json sbb_textline_detector: Add a OCR-D interface 2019-10-10 17:54:42 +02:00
README.md Update README.md 2020-01-16 15:57:20 +01:00
requirements.txt use TensorFlow 1.15.2 or later, but not 2.x 2020-02-20 16:49:54 +01:00
setup.py Revert "Merge branch 'master' of https://github.com/qurator-spk/sbb_textline_detector" 2019-12-09 15:11:25 +01:00

Textline Detection

Detect textlines in document images

Introduction

This tool performs printspace, region and textline detection from document image data and returns the results as PAGE-XML.

Installation

pip install .

Models

In order to run this tool you also need trained models. You can download our pretrained models from here:
https://qurator-data.de/sbb_textline_detector/

Usage

sbb_textline_detector -i <image file name> -o <directory to write output xml> -m <directory of models>

Usage with OCR-D

ocrd-example-binarize -I OCR-D-IMG -O OCR-D-IMG-BIN
ocrd-sbb-textline-detector -I OCR-D-IMG-BIN -O OCR-D-SEG-LINE-SBB \
        -p '{ "model": "/path/to/the/models/textline_detection" }'

Segmentation works on raw RGB images, but respects and retains AlternativeImages from binarization steps, so it's a good idea to do binarization first, then perform the textline detection. The used binarization processor must produce an AlternativeImage for the binarized image, not replace the original raw RGB image.