|
|
|
from itertools import groupby
|
|
|
|
import re
|
|
|
|
import warnings
|
|
|
|
from typing import List, Sequence, MutableMapping, Dict
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
from lxml import etree as ET
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ["ns"]
|
|
|
|
|
|
|
|
|
|
|
|
ns = {
|
|
|
|
'mets': 'http://www.loc.gov/METS/',
|
|
|
|
'mods': 'http://www.loc.gov/mods/v3',
|
|
|
|
"alto": "http://www.loc.gov/standards/alto/ns-v2",
|
|
|
|
"xlink": "http://www.w3.org/1999/xlink",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TagGroup:
|
|
|
|
"""Helper class to simplify the parsing and checking of MODS metadata"""
|
|
|
|
|
|
|
|
def __init__(self, tag, group: List[ET.Element]):
|
|
|
|
self.tag = tag
|
|
|
|
self.group = group
|
|
|
|
|
|
|
|
def to_xml(self):
|
|
|
|
return '\n'.join(str(ET.tostring(e), 'utf-8').strip() for e in self.group)
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return f"TagGroup with content:\n{self.to_xml()}"
|
|
|
|
|
|
|
|
def is_singleton(self):
|
|
|
|
if len(self.group) != 1:
|
|
|
|
raise ValueError('More than one instance: {}'.format(self))
|
|
|
|
return self
|
|
|
|
|
|
|
|
def has_no_attributes(self):
|
|
|
|
return self.has_attributes({})
|
|
|
|
|
|
|
|
def has_attributes(self, attrib):
|
|
|
|
if not isinstance(attrib, Sequence):
|
|
|
|
attrib = [attrib]
|
|
|
|
if not all(e.attrib in attrib for e in self.group):
|
|
|
|
raise ValueError('One or more element has unexpected attributes: {}'.format(self))
|
|
|
|
return self
|
|
|
|
|
|
|
|
def ignore_attributes(self):
|
|
|
|
# This serves as documentation for now.
|
|
|
|
return self
|
|
|
|
|
|
|
|
def sort(self, key=None, reverse=False):
|
|
|
|
self.group = sorted(self.group, key=key, reverse=reverse)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def text(self, separator='\n'):
|
|
|
|
t = ''
|
|
|
|
for e in self.group:
|
|
|
|
if t != '':
|
|
|
|
t += separator
|
|
|
|
if e.text:
|
|
|
|
t += e.text
|
|
|
|
return t
|
|
|
|
|
|
|
|
def text_set(self):
|
|
|
|
return {e.text for e in self.group}
|
|
|
|
|
|
|
|
def descend(self, raise_errors):
|
|
|
|
return _to_dict(self.is_singleton().group[0], raise_errors)
|
|
|
|
|
|
|
|
def filter(self, cond, warn=None):
|
|
|
|
new_group = []
|
|
|
|
for e in self.group:
|
|
|
|
if cond(e):
|
|
|
|
new_group.append(e)
|
|
|
|
else:
|
|
|
|
if warn:
|
|
|
|
warnings.warn('Filtered {} element ({})'.format(self.tag, warn))
|
|
|
|
return TagGroup(self.tag, new_group)
|
|
|
|
|
|
|
|
def force_singleton(self, warn=True):
|
|
|
|
if len(self.group) == 1:
|
|
|
|
return self
|
|
|
|
else:
|
|
|
|
if warn:
|
|
|
|
warnings.warn('Forced single instance of {}'.format(self.tag))
|
|
|
|
return TagGroup(self.tag, self.group[:1])
|
|
|
|
|
|
|
|
RE_ISO8601_DATE = r'^\d{2}(\d{2}|XX)(-\d{2}-\d{2})?$' # Note: Includes non-specific century dates like '18XX'
|
|
|
|
RE_GERMAN_DATE = r'^(?P<dd>\d{2})\.(?P<mm>\d{2})\.(?P<yyyy>\d{4})$'
|
|
|
|
|
|
|
|
def fix_date(self):
|
|
|
|
|
|
|
|
for e in self.group:
|
|
|
|
if e.attrib.get('encoding') == 'w3cdtf':
|
|
|
|
# This should be 'iso8601' according to MODS-AP 2.3.1
|
|
|
|
warnings.warn('Changed w3cdtf encoding to iso8601')
|
|
|
|
e.attrib['encoding'] = 'iso8601'
|
|
|
|
|
|
|
|
new_group = []
|
|
|
|
for e in self.group:
|
|
|
|
if e.attrib.get('encoding') == 'iso8601' and re.match(self.RE_ISO8601_DATE, e.text):
|
|
|
|
new_group.append(e)
|
|
|
|
elif re.match(self.RE_ISO8601_DATE, e.text):
|
|
|
|
warnings.warn('Added iso8601 encoding to date {}'.format(e.text))
|
|
|
|
e.attrib['encoding'] = 'iso8601'
|
|
|
|
new_group.append(e)
|
|
|
|
elif re.match(self.RE_GERMAN_DATE, e.text):
|
|
|
|
warnings.warn('Converted date {} to iso8601 encoding'.format(e.text))
|
|
|
|
m = re.match(self.RE_GERMAN_DATE, e.text)
|
|
|
|
e.text = '{}-{}-{}'.format(m.group('yyyy'), m.group('mm'), m.group('dd'))
|
|
|
|
e.attrib['encoding'] = 'iso8601'
|
|
|
|
new_group.append(e)
|
|
|
|
else:
|
|
|
|
warnings.warn('Not a iso8601 date: "{}"'.format(e.text))
|
|
|
|
new_group.append(e)
|
|
|
|
self.group = new_group
|
|
|
|
|
|
|
|
# Notes:
|
|
|
|
# - There are dates with the misspelled qualifier 'aproximate'
|
|
|
|
# - Rough periods are sometimes given either by:
|
|
|
|
# - years like '19xx'
|
|
|
|
# - or 'approximate' date ranges with point="start"/"end" attributes set
|
|
|
|
# (this could be correct according to MODS-AP 2.3.1)
|
|
|
|
# - Some very specific dates like '06.08.1820' are sometimes given the 'approximate' qualifier
|
|
|
|
# - Sometimes, approximate date ranges are given in the text "1785-1800 (ca.)"
|
|
|
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
def fix_event_type(self):
|
|
|
|
# According to MODS-AP 2.3.1, every originInfo should have its eventType set.
|
|
|
|
# Fix this for special cases.
|
|
|
|
|
|
|
|
for e in self.group:
|
|
|
|
if e.attrib.get('eventType') is None:
|
|
|
|
try:
|
|
|
|
if e.find('mods:publisher', ns).text.startswith('Staatsbibliothek zu Berlin') and \
|
|
|
|
e.find('mods:edition', ns).text == '[Electronic ed.]':
|
|
|
|
e.attrib['eventType'] = 'digitization'
|
|
|
|
warnings.warn('Fixed eventType for electronic ed.')
|
|
|
|
continue
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
try:
|
|
|
|
if e.find('mods:dateIssued', ns) is not None:
|
|
|
|
e.attrib['eventType'] = 'publication'
|
|
|
|
warnings.warn('Fixed eventType for an issued origin')
|
|
|
|
continue
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
try:
|
|
|
|
if e.find('mods:dateCreated', ns) is not None:
|
|
|
|
e.attrib['eventType'] = 'production'
|
|
|
|
warnings.warn('Fixed eventType for a created origin')
|
|
|
|
continue
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
return self
|
|
|
|
|
|
|
|
def fix_script_term(self):
|
|
|
|
for e in self.group:
|
|
|
|
# MODS-AP 2.3.1 is not clear about this, but it looks like that this should be lower case.
|
|
|
|
if e.attrib['authority'] == 'ISO15924':
|
|
|
|
e.attrib['authority'] = 'iso15924'
|
|
|
|
warnings.warn('Changed scriptTerm authority to lower case')
|
|
|
|
return self
|
|
|
|
|
|
|
|
def merge_sub_tags_to_set(self):
|
|
|
|
from .mods4pandas import mods_to_dict
|
|
|
|
value = {}
|
|
|
|
|
|
|
|
sub_dicts = [mods_to_dict(e) for e in self.group]
|
|
|
|
sub_tags = {k for d in sub_dicts for k in d.keys()}
|
|
|
|
for sub_tag in sub_tags:
|
|
|
|
s = set()
|
|
|
|
for d in sub_dicts:
|
|
|
|
v = d.get(sub_tag)
|
|
|
|
if v:
|
|
|
|
# There could be multiple scriptTerms in one language element, e.g. Antiqua and Fraktur in a
|
|
|
|
# German language document.
|
|
|
|
if isinstance(v, set):
|
|
|
|
s.update(v)
|
|
|
|
else:
|
|
|
|
s.add(v)
|
|
|
|
value[sub_tag] = s
|
|
|
|
return value
|
|
|
|
|
|
|
|
def attributes(self):
|
|
|
|
"""
|
|
|
|
Return a merged dict of all attributes of the tag group.
|
|
|
|
|
|
|
|
Probably most useful if used on a singleton, for example:
|
|
|
|
|
|
|
|
value['Page'] = TagGroup(tag, group).is_singleton().attributes()
|
|
|
|
"""
|
|
|
|
attrib = {}
|
|
|
|
for e in self.group:
|
|
|
|
for a, v in e.attrib.items():
|
|
|
|
a_localname = ET.QName(a).localname
|
|
|
|
attrib[a_localname] = v
|
|
|
|
return attrib
|
|
|
|
|
|
|
|
def subelement_counts(self):
|
|
|
|
counts = {}
|
|
|
|
for e in self.group:
|
|
|
|
for x in e.iter():
|
|
|
|
tag = ET.QName(x.tag).localname
|
|
|
|
key = f"{tag}-count"
|
|
|
|
counts[key] = counts.get(key, 0) + 1
|
|
|
|
return counts
|
|
|
|
|
|
|
|
def xpath_statistics(self, xpath_expr, namespaces):
|
|
|
|
"""
|
|
|
|
Extract values and calculate statistics
|
|
|
|
|
|
|
|
Extract values using the given XPath expression, convert them to float and return descriptive
|
|
|
|
statistics on the values.
|
|
|
|
"""
|
|
|
|
values = []
|
|
|
|
for e in self.group:
|
|
|
|
r = e.xpath(xpath_expr, namespaces=namespaces)
|
|
|
|
values += r
|
|
|
|
values = np.array([float(v) for v in values])
|
|
|
|
|
|
|
|
statistics = {}
|
|
|
|
if values.size > 0:
|
|
|
|
statistics[f'{xpath_expr}-mean'] = np.mean(values)
|
|
|
|
statistics[f'{xpath_expr}-median'] = np.median(values)
|
|
|
|
statistics[f'{xpath_expr}-std'] = np.std(values)
|
|
|
|
statistics[f'{xpath_expr}-min'] = np.min(values)
|
|
|
|
statistics[f'{xpath_expr}-max'] = np.max(values)
|
|
|
|
return statistics
|
|
|
|
|
|
|
|
def xpath_count(self, xpath_expr, namespaces):
|
|
|
|
"""
|
|
|
|
Count all elements matching xpath_expr
|
|
|
|
"""
|
|
|
|
values = []
|
|
|
|
for e in self.group:
|
|
|
|
r = e.xpath(xpath_expr, namespaces=namespaces)
|
|
|
|
values += r
|
|
|
|
|
|
|
|
counts = {f'{xpath_expr}-count': len(values)}
|
|
|
|
return counts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sorted_groupby(iterable, key=None):
|
|
|
|
"""
|
|
|
|
Sort iterable by key and then group by the same key.
|
|
|
|
|
|
|
|
itertools.groupby() assumes that the iterable is already sorted. This function
|
|
|
|
conveniently sorts the iterable first, and then groups its elements.
|
|
|
|
"""
|
|
|
|
return groupby(sorted(iterable, key=key), key=key)
|
|
|
|
|
|
|
|
|
|
|
|
def _to_dict(root, raise_errors):
|
|
|
|
from .mods4pandas import mods_to_dict, mets_to_dict
|
|
|
|
from .alto4pandas import alto_to_dict
|
|
|
|
|
|
|
|
root_name = ET.QName(root.tag)
|
|
|
|
if root_name.namespace == "http://www.loc.gov/mods/v3":
|
|
|
|
return mods_to_dict(root, raise_errors)
|
|
|
|
elif root_name.namespace == "http://www.loc.gov/METS/":
|
|
|
|
return mets_to_dict(root, raise_errors)
|
|
|
|
elif root_name.namespace in [
|
|
|
|
"http://schema.ccs-gmbh.com/ALTO",
|
|
|
|
"http://www.loc.gov/standards/alto/",
|
|
|
|
"http://www.loc.gov/standards/alto/ns-v2#",
|
|
|
|
"http://www.loc.gov/standards/alto/ns-v4#",
|
|
|
|
]:
|
|
|
|
return alto_to_dict(root, raise_errors)
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown namespace {root_name.namespace}")
|
|
|
|
|
|
|
|
|
|
|
|
def flatten(d: MutableMapping, parent='', separator='_'):
|
|
|
|
"""
|
|
|
|
Flatten the given nested dict.
|
|
|
|
|
|
|
|
It is assumed that d maps strings to either another dictionary (similarly structured) or some other value.
|
|
|
|
"""
|
|
|
|
items = []
|
|
|
|
|
|
|
|
for k, v in d.items():
|
|
|
|
if parent:
|
|
|
|
new_key = parent + separator + k
|
|
|
|
else:
|
|
|
|
new_key = k
|
|
|
|
|
|
|
|
if isinstance(v, MutableMapping):
|
|
|
|
items.extend(flatten(v, new_key, separator=separator).items())
|
|
|
|
else:
|
|
|
|
items.append((new_key, v))
|
|
|
|
|
|
|
|
return dict(items)
|
|
|
|
|
|
|
|
|
|
|
|
def dicts_to_df(data_list: List[Dict], *, index_column: str) -> pd.DataFrame:
|
|
|
|
"""
|
|
|
|
Convert the given list of dicts to a Pandas DataFrame.
|
|
|
|
|
|
|
|
The keys of the dicts make the columns.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Build columns from keys
|
|
|
|
columns = []
|
|
|
|
for m in data_list:
|
|
|
|
for c in m.keys():
|
|
|
|
if c not in columns:
|
|
|
|
columns.append(c)
|
|
|
|
|
|
|
|
# Build data table
|
|
|
|
data = [[m.get(c) for c in columns] for m in data_list]
|
|
|
|
|
|
|
|
# Build index
|
|
|
|
index = [m[index_column] for m in data_list]
|
|
|
|
|
|
|
|
df = pd.DataFrame(data=data, index=index, columns=columns)
|
|
|
|
return df
|