You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sbb_binarization/sbb_binarize/sbb_binarize.py

171 lines
7.5 KiB
Python

import argparse
import gc
import itertools
import math
import os
from pathlib import Path
from typing import Union, List, Any
5 years ago
import cv2
import numpy as np
5 years ago
import tensorflow as tf
from mpire import WorkerPool
from mpire.utils import make_single_arguments
from tensorflow.python.keras.saving.save import load_model
class SbbBinarizer:
def __init__(self) -> None:
super().__init__()
self.model: Any = None
self.model_height: int = 0
self.model_width: int = 0
self.n_classes: int = 0
def load_model(self, model_dir: Union[str, Path]):
model_dir = Path(model_dir)
self.model = load_model(str(model_dir.absolute()), compile=False)
self.model_height = self.model.layers[len(self.model.layers) - 1].output_shape[1]
self.model_width = self.model.layers[len(self.model.layers) - 1].output_shape[2]
self.n_classes = self.model.layers[len(self.model.layers) - 1].output_shape[3]
def binarize_image(self, image_path: Path, save_path: Path):
if not image_path.exists():
raise ValueError(f"Image not found: {str(image_path)}")
# Most operations are expecting BGR as this is the standard way how CV2 reads images
# noinspection PyUnresolvedReferences
img = cv2.imread(str(image_path))
original_image_height, original_image_width, image_channels = img.shape
# Padded images must be multiples of model size
padded_image_height = math.ceil(original_image_height / self.model_height) * self.model_height
padded_image_width = math.ceil(original_image_width / self.model_width) * self.model_width
padded_image = np.zeros((padded_image_height, padded_image_width, image_channels))
padded_image[0:original_image_height, 0:original_image_width, :] = img[:, :, :]
image_batch = np.expand_dims(padded_image, 0) # Create the batch dimension
patches = tf.image.extract_patches(
images=image_batch,
sizes=[1, self.model_height, self.model_width, 1],
strides=[1, self.model_height, self.model_width, 1],
rates=[1, 1, 1, 1],
padding='SAME'
)
number_of_horizontal_patches = patches.shape[1]
number_of_vertical_patches = patches.shape[2]
total_number_of_patches = number_of_horizontal_patches * number_of_vertical_patches
target_shape = (total_number_of_patches, self.model_height, self.model_width, image_channels)
# Squeeze all image patches (n, m, width, height, channels) into a single big batch (b, width, height, channels)
image_patches = tf.reshape(patches, target_shape)
# Normalize the image to values between 0.0 - 1.0
image_patches = image_patches / float(255.0)
predicted_patches = self.model.predict(image_patches)
# We have to manually call garbage collection and clear_session here to avoid memory leaks.
# Taken from https://medium.com/dive-into-ml-ai/dealing-with-memory-leak-issue-in-keras-model-training-e703907a6501
gc.collect()
tf.keras.backend.clear_session()
binary_patches = np.invert(np.argmax(predicted_patches, axis=3).astype(bool)).astype(np.uint8) * 255
full_image_with_padding = self._patches_to_image(
binary_patches,
padded_image_height,
padded_image_width,
self.model_height,
self.model_width
)
full_image = full_image_with_padding[0:original_image_height, 0:original_image_width]
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
# noinspection PyUnresolvedReferences
cv2.imwrite(str(save_path), full_image)
def _patches_to_image(
self,
patches: np.ndarray,
image_height: int,
image_width: int,
patch_height: int,
patch_width: int
):
height = math.ceil(image_height / patch_height) * patch_height
width = math.ceil(image_width / patch_width) * patch_width
image_reshaped = np.reshape(
np.squeeze(patches),
[height // patch_height, width // patch_width, patch_height, patch_width]
)
image_transposed = np.transpose(a=image_reshaped, axes=[0, 2, 1, 3])
image_resized = np.reshape(image_transposed, [height, width])
return image_resized
def split_list_into_worker_batches(files: List[Any], number_of_workers: int) -> List[List[Any]]:
""" Splits any given list into batches for the specified number of workers and returns a list of lists. """
batches = []
batch_size = math.ceil(len(files) / number_of_workers)
batch_start = 0
for i in range(1, number_of_workers + 1):
batch_end = i * batch_size
file_batch_to_delete = files[batch_start: batch_end]
batches.append(file_batch_to_delete)
batch_start = batch_end
return batches
def batch_predict(input_data):
model_dir, input_images, output_images, worker_number = input_data
print(f"Setting visible cuda devices to {str(worker_number)}")
# Each worker thread will be assigned only one of the available GPUs to allow multiprocessing across GPUs
os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_number)
binarizer = SbbBinarizer()
binarizer.load_model(model_dir)
for image_path, output_path in zip(input_images, output_images):
binarizer.binarize_image(image_path=image_path, save_path=output_path)
print(f"Binarized {image_path}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model_dir', default="model_2021_03_09", help="Path to the directory where the TF model resides or path to an h5 file.")
parser.add_argument('-i', '--input-path', required=True)
parser.add_argument('-o', '--output-path', required=True)
args = parser.parse_args()
input_path = Path(args.input_path)
output_path = Path(args.output_path)
model_directory = args.model_dir
if input_path.is_dir():
print(f"Enumerating all PNG files in {str(input_path)}")
all_input_images = list(input_path.rglob("*.png"))
print(f"Filtering images that have already been binarized in {str(output_path)}")
input_images = [i for i in all_input_images if not (output_path / (i.relative_to(input_path))).exists()]
output_images = [output_path / (i.relative_to(input_path)) for i in input_images]
input_images = [i for i in input_images]
print(f"Starting batch-binarization of {len(input_images)} images")
number_of_gpus = len(tf.config.list_physical_devices('GPU'))
number_of_workers = max(1, number_of_gpus)
image_batches = split_list_into_worker_batches(input_images, number_of_workers)
output_batches = split_list_into_worker_batches(output_images, number_of_workers)
# Must use spawn to create completely new process that has its own resources to properly multiprocess across GPUs
with WorkerPool(n_jobs=number_of_workers, start_method='spawn') as pool:
model_dirs = itertools.repeat(model_directory, len(image_batches))
input_data = zip(model_dirs, image_batches, output_batches, range(number_of_workers))
contents = pool.map_unordered(
batch_predict,
make_single_arguments(input_data),
iterable_len=number_of_workers,
progress_bar=False
)
else:
binarizer = SbbBinarizer()
binarizer.load_model(model_directory)
binarizer.binarize_image(image_path=input_path, save_path=output_path)