mirror of
				https://github.com/qurator-spk/sbb_binarization.git
				synced 2025-10-31 09:34:14 +01:00 
			
		
		
		
	Rewrote binarization script to always use patches, but in a much more efficient way and adding support for batch-conversion with multiple GPUs.
This commit is contained in:
		
							parent
							
								
									b0a8b613e8
								
							
						
					
					
						commit
						4112c6fe71
					
				
					 2 changed files with 136 additions and 239 deletions
				
			
		|  | @ -3,3 +3,4 @@ setuptools >= 41 | ||||||
| opencv-python-headless | opencv-python-headless | ||||||
| ocrd >= 2.22.3 | ocrd >= 2.22.3 | ||||||
| tensorflow >= 2.4.0 | tensorflow >= 2.4.0 | ||||||
|  | mpire | ||||||
|  | @ -1,272 +1,168 @@ | ||||||
| """ |  | ||||||
| Tool to load model and binarize a given image. |  | ||||||
| """ |  | ||||||
| import argparse | import argparse | ||||||
| import sys | import gc | ||||||
| from os import environ, devnull | import itertools | ||||||
|  | import math | ||||||
|  | import os | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| from typing import Union | from typing import Union, List, Any | ||||||
| 
 | 
 | ||||||
| import cv2 | import cv2 | ||||||
| import numpy as np | import numpy as np | ||||||
| 
 |  | ||||||
| environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |  | ||||||
| stderr = sys.stderr |  | ||||||
| sys.stderr = open(devnull, 'w') |  | ||||||
| import tensorflow as tf | import tensorflow as tf | ||||||
| from tensorflow.keras.models import load_model | from mpire import WorkerPool | ||||||
| from tensorflow.python.keras import backend as tensorflow_backend | from mpire.utils import make_single_arguments | ||||||
| 
 | from tensorflow.python.keras.saving.save import load_model | ||||||
| sys.stderr = stderr |  | ||||||
| 
 |  | ||||||
| import logging |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| def resize_image(img_in, input_height, input_width): |  | ||||||
|     return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST) |  | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| class SbbBinarizer: | class SbbBinarizer: | ||||||
|  |     def __init__(self) -> None: | ||||||
|  |         super().__init__() | ||||||
|  |         self.model: Any = None | ||||||
|  |         self.model_height: int = 0 | ||||||
|  |         self.model_width: int = 0 | ||||||
|  |         self.n_classes: int = 0 | ||||||
| 
 | 
 | ||||||
|     def __init__(self, model_dir: Union[str, Path], logger=None): |     def load_model(self, model_dir: Union[str, Path]): | ||||||
|         model_dir = Path(model_dir) |         model_dir = Path(model_dir) | ||||||
|         self.log = logger if logger else logging.getLogger('SbbBinarizer') |         self.model = load_model(str(model_dir.absolute()), compile=False) | ||||||
|  |         self.model_height = self.model.layers[len(self.model.layers) - 1].output_shape[1] | ||||||
|  |         self.model_width = self.model.layers[len(self.model.layers) - 1].output_shape[2] | ||||||
|  |         self.n_classes = self.model.layers[len(self.model.layers) - 1].output_shape[3] | ||||||
| 
 | 
 | ||||||
|         self.start_new_session() |     def binarize_image(self, image_path: Path, save_path: Path): | ||||||
|  |         if not image_path.exists(): | ||||||
|  |             raise ValueError(f"Image not found: {str(image_path)}") | ||||||
| 
 | 
 | ||||||
|         self.model_files = list([str(p.absolute()) for p in model_dir.rglob("*.h5")]) |         # Most operations are expecting BGR as this is the standard way how CV2 reads images | ||||||
|         if not self.model_files: |         # noinspection PyUnresolvedReferences | ||||||
|             raise ValueError(f"No models found in {str(model_dir)}") |         img = cv2.imread(str(image_path)) | ||||||
|  |         original_image_height, original_image_width, image_channels = img.shape | ||||||
| 
 | 
 | ||||||
|         self.models = [] |         # Padded images must be multiples of model size | ||||||
|         for model_file in self.model_files: |         padded_image_height = math.ceil(original_image_height / self.model_height) * self.model_height | ||||||
|             self.models.append(self.load_model(model_file)) |         padded_image_width = math.ceil(original_image_width / self.model_width) * self.model_width | ||||||
|  |         padded_image = np.zeros((padded_image_height, padded_image_width, image_channels)) | ||||||
|  |         padded_image[0:original_image_height, 0:original_image_width, :] = img[:, :, :] | ||||||
| 
 | 
 | ||||||
|     def start_new_session(self): |         image_batch = np.expand_dims(padded_image, 0)  # To create the batch information | ||||||
|         config = tf.compat.v1.ConfigProto() |         patches = tf.image.extract_patches( | ||||||
|         config.gpu_options.allow_growth = True |             images=image_batch, | ||||||
|  |             sizes=[1, self.model_height, self.model_width, 1], | ||||||
|  |             strides=[1, self.model_height, self.model_width, 1], | ||||||
|  |             rates=[1, 1, 1, 1], | ||||||
|  |             padding='SAME' | ||||||
|  |         ) | ||||||
| 
 | 
 | ||||||
|         self.session = tf.compat.v1.Session(config=config)  # tf.InteractiveSession() |         number_of_horizontal_patches = patches.shape[1] | ||||||
|         tensorflow_backend.set_session(self.session) |         number_of_vertical_patches = patches.shape[2] | ||||||
|  |         total_number_of_patches = number_of_horizontal_patches * number_of_vertical_patches | ||||||
|  |         target_shape = (total_number_of_patches, self.model_height, self.model_width, image_channels) | ||||||
|  |         # Squeeze all image patches (n, m, width, height, channels) into a single big batch (b, width, height, channels) | ||||||
|  |         image_patches = tf.reshape(patches, target_shape) | ||||||
|  |         # Normalize the image to values between 0.0 - 1.0 | ||||||
|  |         image_patches = image_patches / float(255.0) | ||||||
| 
 | 
 | ||||||
|     def end_session(self): |         predicted_patches = self.model.predict(image_patches) | ||||||
|         tensorflow_backend.clear_session() |         # We have to manually call garbage collection and clear_session here to avoid memory leaks. | ||||||
|         self.session.close() |         # Taken from https://medium.com/dive-into-ml-ai/dealing-with-memory-leak-issue-in-keras-model-training-e703907a6501 | ||||||
|         del self.session |         gc.collect() | ||||||
|  |         tf.keras.backend.clear_session() | ||||||
| 
 | 
 | ||||||
|     def load_model(self, model_path: str): |         binary_patches = np.invert(np.argmax(predicted_patches, axis=3).astype(bool)).astype(np.uint8) * 255 | ||||||
|         model = load_model(model_path, compile=False) |         full_image_with_padding = self._patches_to_image( | ||||||
|         model_height = model.layers[len(model.layers) - 1].output_shape[1] |             binary_patches, | ||||||
|         model_width = model.layers[len(model.layers) - 1].output_shape[2] |             padded_image_height, | ||||||
|         n_classes = model.layers[len(model.layers) - 1].output_shape[3] |             padded_image_width, | ||||||
|         return model, model_height, model_width, n_classes |             self.model_height, | ||||||
|  |             self.model_width | ||||||
|  |         ) | ||||||
|  |         full_image = full_image_with_padding[0:original_image_height, 0:original_image_width] | ||||||
|  |         Path(save_path).parent.mkdir(parents=True, exist_ok=True) | ||||||
|  |         # noinspection PyUnresolvedReferences | ||||||
|  |         cv2.imwrite(str(save_path), full_image) | ||||||
| 
 | 
 | ||||||
|     def predict(self, model_in, img, use_patches): |     def _patches_to_image( | ||||||
|         tensorflow_backend.set_session(self.session) |         self, | ||||||
|         model, model_height, model_width, n_classes = model_in |         patches: np.ndarray, | ||||||
|  |         image_height: int, | ||||||
|  |         image_width: int, | ||||||
|  |         patch_height: int, | ||||||
|  |         patch_width: int | ||||||
|  |     ): | ||||||
|  |         height = math.ceil(image_height / patch_height) * patch_height | ||||||
|  |         width = math.ceil(image_width / patch_width) * patch_width | ||||||
| 
 | 
 | ||||||
|         img_org_h = img.shape[0] |         image_reshaped = np.reshape( | ||||||
|         img_org_w = img.shape[1] |             np.squeeze(patches), | ||||||
| 
 |             [height // patch_height, width // patch_width, patch_height, patch_width] | ||||||
|         if img.shape[0] < model_height and img.shape[1] >= model_width: |         ) | ||||||
|             img_padded = np.zeros((model_height, img.shape[1], img.shape[2])) |         image_transposed = np.transpose(a=image_reshaped, axes=[0, 2, 1, 3]) | ||||||
| 
 |         image_resized = np.reshape(image_transposed, [height, width]) | ||||||
|             index_start_h = int(abs(img.shape[0] - model_height) / 2.) |         return image_resized | ||||||
|             index_start_w = 0 |  | ||||||
| 
 |  | ||||||
|             img_padded[index_start_h: index_start_h + img.shape[0], :, :] = img[:, :, :] |  | ||||||
| 
 |  | ||||||
|         elif img.shape[0] >= model_height and img.shape[1] < model_width: |  | ||||||
|             img_padded = np.zeros((img.shape[0], model_width, img.shape[2])) |  | ||||||
| 
 |  | ||||||
|             index_start_h = 0 |  | ||||||
|             index_start_w = int(abs(img.shape[1] - model_width) / 2.) |  | ||||||
| 
 |  | ||||||
|             img_padded[:, index_start_w: index_start_w + img.shape[1], :] = img[:, :, :] |  | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|         elif img.shape[0] < model_height and img.shape[1] < model_width: | def split_list_into_worker_batches(files: List[Any], number_of_workers: int) -> List[List[Any]]: | ||||||
|             img_padded = np.zeros((model_height, model_width, img.shape[2])) |     """ Splits any given list into batches for the specified number of workers and returns a list of lists. """ | ||||||
|  |     batches = [] | ||||||
|  |     batch_size = math.ceil(len(files) / number_of_workers) | ||||||
|  |     batch_start = 0 | ||||||
|  |     for i in range(1, number_of_workers + 1): | ||||||
|  |         batch_end = i * batch_size | ||||||
|  |         file_batch_to_delete = files[batch_start: batch_end] | ||||||
|  |         batches.append(file_batch_to_delete) | ||||||
|  |         batch_start = batch_end | ||||||
|  |     return batches | ||||||
| 
 | 
 | ||||||
|             index_start_h = int(abs(img.shape[0] - model_height) / 2.) |  | ||||||
|             index_start_w = int(abs(img.shape[1] - model_width) / 2.) |  | ||||||
| 
 | 
 | ||||||
|             img_padded[index_start_h: index_start_h + img.shape[0], index_start_w: index_start_w + img.shape[1], :] = img[:, :, :] | def batch_predict(input_data): | ||||||
|  |     model_dir, input_images, output_images, worker_number = input_data | ||||||
|  |     print(f"Setting visible cuda devices to {str(worker_number)}") | ||||||
|  |     os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_number) | ||||||
| 
 | 
 | ||||||
|         else: |     binarizer = SbbBinarizer() | ||||||
|             index_start_h = 0 |     binarizer.load_model(model_dir) | ||||||
|             index_start_w = 0 |  | ||||||
|             img_padded = np.copy(img) |  | ||||||
| 
 | 
 | ||||||
|         img = np.copy(img_padded) |     for image_path, output_path in zip(input_images, output_images): | ||||||
|  |         binarizer.binarize_image(image_path=image_path, save_path=output_path) | ||||||
|  |         print(f"Binarized {image_path}") | ||||||
| 
 | 
 | ||||||
|         if use_patches: |  | ||||||
| 
 | 
 | ||||||
|             margin = int(0.1 * model_width) | if __name__ == '__main__': | ||||||
|  |     parser = argparse.ArgumentParser() | ||||||
|  |     parser.add_argument('-m', '--model_dir', default="model_2021_03_09", help="Path to the directory where the TF model resides or path to an h5 file.") | ||||||
|  |     parser.add_argument('-i', '--input-path', required=True) | ||||||
|  |     parser.add_argument('-o', '--output-path', required=True) | ||||||
|  |     args = parser.parse_args() | ||||||
| 
 | 
 | ||||||
|             width_mid = model_width - 2 * margin |     input_path = Path(args.input_path) | ||||||
|             height_mid = model_height - 2 * margin |     output_path = Path(args.output_path) | ||||||
|  |     model_directory = args.model_dir | ||||||
| 
 | 
 | ||||||
|             img = img / float(255.0) |     if input_path.is_dir(): | ||||||
|  |         print(f"Enumerating all PNG files in {str(input_path)}") | ||||||
|  |         all_input_images = list(input_path.rglob("*.png")) | ||||||
|  |         print(f"Filtering images that have already been binarized in {str(output_path)}") | ||||||
|  |         input_images = [i for i in all_input_images if not (output_path / (i.relative_to(input_path))).exists()] | ||||||
|  |         output_images = [output_path / (i.relative_to(input_path)) for i in input_images] | ||||||
|  |         input_images = [i for i in input_images] | ||||||
| 
 | 
 | ||||||
|             img_h = img.shape[0] |         print(f"Starting binarization of {len(input_images)} images") | ||||||
|             img_w = img.shape[1] |  | ||||||
| 
 | 
 | ||||||
|             prediction_true = np.zeros((img_h, img_w, 3)) |         number_of_gpus = len(tf.config.list_physical_devices('GPU')) | ||||||
|             mask_true = np.zeros((img_h, img_w)) |         number_of_workers = max(1, number_of_gpus) | ||||||
|             nxf = img_w / float(width_mid) |         image_batches = split_list_into_worker_batches(input_images, number_of_workers) | ||||||
|             nyf = img_h / float(height_mid) |         output_batches = split_list_into_worker_batches(output_images, number_of_workers) | ||||||
| 
 | 
 | ||||||
|             if nxf > int(nxf): |         with WorkerPool(n_jobs=number_of_workers, start_method='spawn') as pool: | ||||||
|                 nxf = int(nxf) + 1 |             model_dirs = itertools.repeat(model_directory, len(image_batches)) | ||||||
|             else: |             input_data = zip(model_dirs, image_batches, output_batches, range(number_of_workers)) | ||||||
|                 nxf = int(nxf) |             contents = pool.map_unordered( | ||||||
| 
 |                 batch_predict, | ||||||
|             if nyf > int(nyf): |                 make_single_arguments(input_data), | ||||||
|                 nyf = int(nyf) + 1 |                 iterable_len=number_of_workers, | ||||||
|             else: |                 progress_bar=False | ||||||
|                 nyf = int(nyf) |             ) | ||||||
| 
 |     else: | ||||||
|             for i in range(nxf): |         binarizer = SbbBinarizer() | ||||||
|                 for j in range(nyf): |         binarizer.load_model(model_directory) | ||||||
| 
 |         binarizer.binarize_image(image_path=input_path, save_path=output_path) | ||||||
|                     if i == 0: |  | ||||||
|                         index_x_d = i * width_mid |  | ||||||
|                         index_x_u = index_x_d + model_width |  | ||||||
|                     elif i > 0: |  | ||||||
|                         index_x_d = i * width_mid |  | ||||||
|                         index_x_u = index_x_d + model_width |  | ||||||
| 
 |  | ||||||
|                     if j == 0: |  | ||||||
|                         index_y_d = j * height_mid |  | ||||||
|                         index_y_u = index_y_d + model_height |  | ||||||
|                     elif j > 0: |  | ||||||
|                         index_y_d = j * height_mid |  | ||||||
|                         index_y_u = index_y_d + model_height |  | ||||||
| 
 |  | ||||||
|                     if index_x_u > img_w: |  | ||||||
|                         index_x_u = img_w |  | ||||||
|                         index_x_d = img_w - model_width |  | ||||||
|                     if index_y_u > img_h: |  | ||||||
|                         index_y_u = img_h |  | ||||||
|                         index_y_d = img_h - model_height |  | ||||||
| 
 |  | ||||||
|                     img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] |  | ||||||
| 
 |  | ||||||
|                     label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) |  | ||||||
| 
 |  | ||||||
|                     seg = np.argmax(label_p_pred, axis=3)[0] |  | ||||||
| 
 |  | ||||||
|                     seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) |  | ||||||
| 
 |  | ||||||
|                     if i == 0 and j == 0: |  | ||||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] |  | ||||||
|                         seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg |  | ||||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j == nyf - 1: |  | ||||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :] |  | ||||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg |  | ||||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     elif i == 0 and j == nyf - 1: |  | ||||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :] |  | ||||||
|                         seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg |  | ||||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j == 0: |  | ||||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] |  | ||||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg |  | ||||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     elif i == 0 and j != 0 and j != nyf - 1: |  | ||||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] |  | ||||||
|                         seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg |  | ||||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j != 0 and j != nyf - 1: |  | ||||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] |  | ||||||
|                         seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg |  | ||||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     elif i != 0 and i != nxf - 1 and j == 0: |  | ||||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] |  | ||||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg |  | ||||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     elif i != 0 and i != nxf - 1 and j == nyf - 1: |  | ||||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :] |  | ||||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg |  | ||||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin, :] = seg_color |  | ||||||
| 
 |  | ||||||
|                     else: |  | ||||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] |  | ||||||
|                         seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin] |  | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg |  | ||||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color |  | ||||||
| 
 |  | ||||||
|             prediction_true = prediction_true[index_start_h: index_start_h + img_org_h, index_start_w: index_start_w + img_org_w, :] |  | ||||||
|             prediction_true = prediction_true.astype(np.uint8) |  | ||||||
| 
 |  | ||||||
|         else: |  | ||||||
|             img_h_page = img.shape[0] |  | ||||||
|             img_w_page = img.shape[1] |  | ||||||
|             img = img / float(255.0) |  | ||||||
|             img = resize_image(img, model_height, model_width) |  | ||||||
| 
 |  | ||||||
|             label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2])) |  | ||||||
| 
 |  | ||||||
|             seg = np.argmax(label_p_pred, axis=3)[0] |  | ||||||
|             seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) |  | ||||||
|             prediction_true = resize_image(seg_color, img_h_page, img_w_page) |  | ||||||
|             prediction_true = prediction_true.astype(np.uint8) |  | ||||||
|         return prediction_true[:, :, 0] |  | ||||||
| 
 |  | ||||||
|     def run(self, image=None, image_path=None, save=None, use_patches=False): |  | ||||||
|         if (image is not None and image_path is not None) or (image is None and image_path is None): |  | ||||||
|             raise ValueError("Must pass either a opencv2 image or an image_path") |  | ||||||
|         if image_path is not None: |  | ||||||
|             image = cv2.imread(image_path) |  | ||||||
|         img_last = 0 |  | ||||||
|         for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): |  | ||||||
|             self.log.info(f"Predicting with model {model_file} [{n + 1}/{len(self.model_files)}]") |  | ||||||
| 
 |  | ||||||
|             res = self.predict(model, image, use_patches) |  | ||||||
| 
 |  | ||||||
|             img_fin = np.zeros((res.shape[0], res.shape[1], 3)) |  | ||||||
|             res[:, :][res[:, :] == 0] = 2 |  | ||||||
|             res = res - 1 |  | ||||||
|             res = res * 255 |  | ||||||
|             img_fin[:, :, 0] = res |  | ||||||
|             img_fin[:, :, 1] = res |  | ||||||
|             img_fin[:, :, 2] = res |  | ||||||
| 
 |  | ||||||
|             img_fin = img_fin.astype(np.uint8) |  | ||||||
|             img_fin = (res[:, :] == 0) * 255 |  | ||||||
|             img_last = img_last + img_fin |  | ||||||
| 
 |  | ||||||
|         kernel = np.ones((5, 5), np.uint8) |  | ||||||
|         img_last[:, :][img_last[:, :] > 0] = 255 |  | ||||||
|         img_last = (img_last[:, :] == 0) * 255 |  | ||||||
|         if save: |  | ||||||
|             # Create the output directory (and if necessary it's parents) if it doesn't exist already |  | ||||||
|             Path(save).parent.mkdir(parents=True, exist_ok=True) |  | ||||||
|             cv2.imwrite(save, img_last) |  | ||||||
|         return img_last |  | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue