mirror of
				https://github.com/qurator-spk/sbb_binarization.git
				synced 2025-10-31 09:34:14 +01:00 
			
		
		
		
	Rewrote binarization script to always use patches, but in a much more efficient way and adding support for batch-conversion with multiple GPUs.
This commit is contained in:
		
							parent
							
								
									b0a8b613e8
								
							
						
					
					
						commit
						4112c6fe71
					
				
					 2 changed files with 136 additions and 239 deletions
				
			
		|  | @ -3,3 +3,4 @@ setuptools >= 41 | |||
| opencv-python-headless | ||||
| ocrd >= 2.22.3 | ||||
| tensorflow >= 2.4.0 | ||||
| mpire | ||||
|  | @ -1,272 +1,168 @@ | |||
| """ | ||||
| Tool to load model and binarize a given image. | ||||
| """ | ||||
| import argparse | ||||
| import sys | ||||
| from os import environ, devnull | ||||
| import gc | ||||
| import itertools | ||||
| import math | ||||
| import os | ||||
| from pathlib import Path | ||||
| from typing import Union | ||||
| from typing import Union, List, Any | ||||
| 
 | ||||
| import cv2 | ||||
| import numpy as np | ||||
| 
 | ||||
| environ['TF_CPP_MIN_LOG_LEVEL'] = '3' | ||||
| stderr = sys.stderr | ||||
| sys.stderr = open(devnull, 'w') | ||||
| import tensorflow as tf | ||||
| from tensorflow.keras.models import load_model | ||||
| from tensorflow.python.keras import backend as tensorflow_backend | ||||
| 
 | ||||
| sys.stderr = stderr | ||||
| 
 | ||||
| import logging | ||||
| 
 | ||||
| 
 | ||||
| def resize_image(img_in, input_height, input_width): | ||||
|     return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST) | ||||
| from mpire import WorkerPool | ||||
| from mpire.utils import make_single_arguments | ||||
| from tensorflow.python.keras.saving.save import load_model | ||||
| 
 | ||||
| 
 | ||||
| class SbbBinarizer: | ||||
|     def __init__(self) -> None: | ||||
|         super().__init__() | ||||
|         self.model: Any = None | ||||
|         self.model_height: int = 0 | ||||
|         self.model_width: int = 0 | ||||
|         self.n_classes: int = 0 | ||||
| 
 | ||||
|     def __init__(self, model_dir: Union[str, Path], logger=None): | ||||
|     def load_model(self, model_dir: Union[str, Path]): | ||||
|         model_dir = Path(model_dir) | ||||
|         self.log = logger if logger else logging.getLogger('SbbBinarizer') | ||||
|         self.model = load_model(str(model_dir.absolute()), compile=False) | ||||
|         self.model_height = self.model.layers[len(self.model.layers) - 1].output_shape[1] | ||||
|         self.model_width = self.model.layers[len(self.model.layers) - 1].output_shape[2] | ||||
|         self.n_classes = self.model.layers[len(self.model.layers) - 1].output_shape[3] | ||||
| 
 | ||||
|         self.start_new_session() | ||||
|     def binarize_image(self, image_path: Path, save_path: Path): | ||||
|         if not image_path.exists(): | ||||
|             raise ValueError(f"Image not found: {str(image_path)}") | ||||
| 
 | ||||
|         self.model_files = list([str(p.absolute()) for p in model_dir.rglob("*.h5")]) | ||||
|         if not self.model_files: | ||||
|             raise ValueError(f"No models found in {str(model_dir)}") | ||||
|         # Most operations are expecting BGR as this is the standard way how CV2 reads images | ||||
|         # noinspection PyUnresolvedReferences | ||||
|         img = cv2.imread(str(image_path)) | ||||
|         original_image_height, original_image_width, image_channels = img.shape | ||||
| 
 | ||||
|         self.models = [] | ||||
|         for model_file in self.model_files: | ||||
|             self.models.append(self.load_model(model_file)) | ||||
|         # Padded images must be multiples of model size | ||||
|         padded_image_height = math.ceil(original_image_height / self.model_height) * self.model_height | ||||
|         padded_image_width = math.ceil(original_image_width / self.model_width) * self.model_width | ||||
|         padded_image = np.zeros((padded_image_height, padded_image_width, image_channels)) | ||||
|         padded_image[0:original_image_height, 0:original_image_width, :] = img[:, :, :] | ||||
| 
 | ||||
|     def start_new_session(self): | ||||
|         config = tf.compat.v1.ConfigProto() | ||||
|         config.gpu_options.allow_growth = True | ||||
|         image_batch = np.expand_dims(padded_image, 0)  # To create the batch information | ||||
|         patches = tf.image.extract_patches( | ||||
|             images=image_batch, | ||||
|             sizes=[1, self.model_height, self.model_width, 1], | ||||
|             strides=[1, self.model_height, self.model_width, 1], | ||||
|             rates=[1, 1, 1, 1], | ||||
|             padding='SAME' | ||||
|         ) | ||||
| 
 | ||||
|         self.session = tf.compat.v1.Session(config=config)  # tf.InteractiveSession() | ||||
|         tensorflow_backend.set_session(self.session) | ||||
|         number_of_horizontal_patches = patches.shape[1] | ||||
|         number_of_vertical_patches = patches.shape[2] | ||||
|         total_number_of_patches = number_of_horizontal_patches * number_of_vertical_patches | ||||
|         target_shape = (total_number_of_patches, self.model_height, self.model_width, image_channels) | ||||
|         # Squeeze all image patches (n, m, width, height, channels) into a single big batch (b, width, height, channels) | ||||
|         image_patches = tf.reshape(patches, target_shape) | ||||
|         # Normalize the image to values between 0.0 - 1.0 | ||||
|         image_patches = image_patches / float(255.0) | ||||
| 
 | ||||
|     def end_session(self): | ||||
|         tensorflow_backend.clear_session() | ||||
|         self.session.close() | ||||
|         del self.session | ||||
|         predicted_patches = self.model.predict(image_patches) | ||||
|         # We have to manually call garbage collection and clear_session here to avoid memory leaks. | ||||
|         # Taken from https://medium.com/dive-into-ml-ai/dealing-with-memory-leak-issue-in-keras-model-training-e703907a6501 | ||||
|         gc.collect() | ||||
|         tf.keras.backend.clear_session() | ||||
| 
 | ||||
|     def load_model(self, model_path: str): | ||||
|         model = load_model(model_path, compile=False) | ||||
|         model_height = model.layers[len(model.layers) - 1].output_shape[1] | ||||
|         model_width = model.layers[len(model.layers) - 1].output_shape[2] | ||||
|         n_classes = model.layers[len(model.layers) - 1].output_shape[3] | ||||
|         return model, model_height, model_width, n_classes | ||||
|         binary_patches = np.invert(np.argmax(predicted_patches, axis=3).astype(bool)).astype(np.uint8) * 255 | ||||
|         full_image_with_padding = self._patches_to_image( | ||||
|             binary_patches, | ||||
|             padded_image_height, | ||||
|             padded_image_width, | ||||
|             self.model_height, | ||||
|             self.model_width | ||||
|         ) | ||||
|         full_image = full_image_with_padding[0:original_image_height, 0:original_image_width] | ||||
|         Path(save_path).parent.mkdir(parents=True, exist_ok=True) | ||||
|         # noinspection PyUnresolvedReferences | ||||
|         cv2.imwrite(str(save_path), full_image) | ||||
| 
 | ||||
|     def predict(self, model_in, img, use_patches): | ||||
|         tensorflow_backend.set_session(self.session) | ||||
|         model, model_height, model_width, n_classes = model_in | ||||
|     def _patches_to_image( | ||||
|         self, | ||||
|         patches: np.ndarray, | ||||
|         image_height: int, | ||||
|         image_width: int, | ||||
|         patch_height: int, | ||||
|         patch_width: int | ||||
|     ): | ||||
|         height = math.ceil(image_height / patch_height) * patch_height | ||||
|         width = math.ceil(image_width / patch_width) * patch_width | ||||
| 
 | ||||
|         img_org_h = img.shape[0] | ||||
|         img_org_w = img.shape[1] | ||||
| 
 | ||||
|         if img.shape[0] < model_height and img.shape[1] >= model_width: | ||||
|             img_padded = np.zeros((model_height, img.shape[1], img.shape[2])) | ||||
| 
 | ||||
|             index_start_h = int(abs(img.shape[0] - model_height) / 2.) | ||||
|             index_start_w = 0 | ||||
| 
 | ||||
|             img_padded[index_start_h: index_start_h + img.shape[0], :, :] = img[:, :, :] | ||||
| 
 | ||||
|         elif img.shape[0] >= model_height and img.shape[1] < model_width: | ||||
|             img_padded = np.zeros((img.shape[0], model_width, img.shape[2])) | ||||
| 
 | ||||
|             index_start_h = 0 | ||||
|             index_start_w = int(abs(img.shape[1] - model_width) / 2.) | ||||
| 
 | ||||
|             img_padded[:, index_start_w: index_start_w + img.shape[1], :] = img[:, :, :] | ||||
|         image_reshaped = np.reshape( | ||||
|             np.squeeze(patches), | ||||
|             [height // patch_height, width // patch_width, patch_height, patch_width] | ||||
|         ) | ||||
|         image_transposed = np.transpose(a=image_reshaped, axes=[0, 2, 1, 3]) | ||||
|         image_resized = np.reshape(image_transposed, [height, width]) | ||||
|         return image_resized | ||||
| 
 | ||||
| 
 | ||||
|         elif img.shape[0] < model_height and img.shape[1] < model_width: | ||||
|             img_padded = np.zeros((model_height, model_width, img.shape[2])) | ||||
| def split_list_into_worker_batches(files: List[Any], number_of_workers: int) -> List[List[Any]]: | ||||
|     """ Splits any given list into batches for the specified number of workers and returns a list of lists. """ | ||||
|     batches = [] | ||||
|     batch_size = math.ceil(len(files) / number_of_workers) | ||||
|     batch_start = 0 | ||||
|     for i in range(1, number_of_workers + 1): | ||||
|         batch_end = i * batch_size | ||||
|         file_batch_to_delete = files[batch_start: batch_end] | ||||
|         batches.append(file_batch_to_delete) | ||||
|         batch_start = batch_end | ||||
|     return batches | ||||
| 
 | ||||
|             index_start_h = int(abs(img.shape[0] - model_height) / 2.) | ||||
|             index_start_w = int(abs(img.shape[1] - model_width) / 2.) | ||||
| 
 | ||||
|             img_padded[index_start_h: index_start_h + img.shape[0], index_start_w: index_start_w + img.shape[1], :] = img[:, :, :] | ||||
| def batch_predict(input_data): | ||||
|     model_dir, input_images, output_images, worker_number = input_data | ||||
|     print(f"Setting visible cuda devices to {str(worker_number)}") | ||||
|     os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_number) | ||||
| 
 | ||||
|         else: | ||||
|             index_start_h = 0 | ||||
|             index_start_w = 0 | ||||
|             img_padded = np.copy(img) | ||||
|     binarizer = SbbBinarizer() | ||||
|     binarizer.load_model(model_dir) | ||||
| 
 | ||||
|         img = np.copy(img_padded) | ||||
|     for image_path, output_path in zip(input_images, output_images): | ||||
|         binarizer.binarize_image(image_path=image_path, save_path=output_path) | ||||
|         print(f"Binarized {image_path}") | ||||
| 
 | ||||
|         if use_patches: | ||||
| 
 | ||||
|             margin = int(0.1 * model_width) | ||||
| if __name__ == '__main__': | ||||
|     parser = argparse.ArgumentParser() | ||||
|     parser.add_argument('-m', '--model_dir', default="model_2021_03_09", help="Path to the directory where the TF model resides or path to an h5 file.") | ||||
|     parser.add_argument('-i', '--input-path', required=True) | ||||
|     parser.add_argument('-o', '--output-path', required=True) | ||||
|     args = parser.parse_args() | ||||
| 
 | ||||
|             width_mid = model_width - 2 * margin | ||||
|             height_mid = model_height - 2 * margin | ||||
|     input_path = Path(args.input_path) | ||||
|     output_path = Path(args.output_path) | ||||
|     model_directory = args.model_dir | ||||
| 
 | ||||
|             img = img / float(255.0) | ||||
|     if input_path.is_dir(): | ||||
|         print(f"Enumerating all PNG files in {str(input_path)}") | ||||
|         all_input_images = list(input_path.rglob("*.png")) | ||||
|         print(f"Filtering images that have already been binarized in {str(output_path)}") | ||||
|         input_images = [i for i in all_input_images if not (output_path / (i.relative_to(input_path))).exists()] | ||||
|         output_images = [output_path / (i.relative_to(input_path)) for i in input_images] | ||||
|         input_images = [i for i in input_images] | ||||
| 
 | ||||
|             img_h = img.shape[0] | ||||
|             img_w = img.shape[1] | ||||
|         print(f"Starting binarization of {len(input_images)} images") | ||||
| 
 | ||||
|             prediction_true = np.zeros((img_h, img_w, 3)) | ||||
|             mask_true = np.zeros((img_h, img_w)) | ||||
|             nxf = img_w / float(width_mid) | ||||
|             nyf = img_h / float(height_mid) | ||||
|         number_of_gpus = len(tf.config.list_physical_devices('GPU')) | ||||
|         number_of_workers = max(1, number_of_gpus) | ||||
|         image_batches = split_list_into_worker_batches(input_images, number_of_workers) | ||||
|         output_batches = split_list_into_worker_batches(output_images, number_of_workers) | ||||
| 
 | ||||
|             if nxf > int(nxf): | ||||
|                 nxf = int(nxf) + 1 | ||||
|             else: | ||||
|                 nxf = int(nxf) | ||||
| 
 | ||||
|             if nyf > int(nyf): | ||||
|                 nyf = int(nyf) + 1 | ||||
|             else: | ||||
|                 nyf = int(nyf) | ||||
| 
 | ||||
|             for i in range(nxf): | ||||
|                 for j in range(nyf): | ||||
| 
 | ||||
|                     if i == 0: | ||||
|                         index_x_d = i * width_mid | ||||
|                         index_x_u = index_x_d + model_width | ||||
|                     elif i > 0: | ||||
|                         index_x_d = i * width_mid | ||||
|                         index_x_u = index_x_d + model_width | ||||
| 
 | ||||
|                     if j == 0: | ||||
|                         index_y_d = j * height_mid | ||||
|                         index_y_u = index_y_d + model_height | ||||
|                     elif j > 0: | ||||
|                         index_y_d = j * height_mid | ||||
|                         index_y_u = index_y_d + model_height | ||||
| 
 | ||||
|                     if index_x_u > img_w: | ||||
|                         index_x_u = img_w | ||||
|                         index_x_d = img_w - model_width | ||||
|                     if index_y_u > img_h: | ||||
|                         index_y_u = img_h | ||||
|                         index_y_d = img_h - model_height | ||||
| 
 | ||||
|                     img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | ||||
| 
 | ||||
|                     label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) | ||||
| 
 | ||||
|                     seg = np.argmax(label_p_pred, axis=3)[0] | ||||
| 
 | ||||
|                     seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
| 
 | ||||
|                     if i == 0 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf - 1 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i == 0 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf - 1 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i == 0 and j != 0 and j != nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i == nxf - 1 and j != 0 and j != nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color | ||||
| 
 | ||||
|                     elif i != 0 and i != nxf - 1 and j == 0: | ||||
|                         seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     elif i != 0 and i != nxf - 1 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|                     else: | ||||
|                         seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin] | ||||
| 
 | ||||
|                         mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color | ||||
| 
 | ||||
|             prediction_true = prediction_true[index_start_h: index_start_h + img_org_h, index_start_w: index_start_w + img_org_w, :] | ||||
|             prediction_true = prediction_true.astype(np.uint8) | ||||
| 
 | ||||
|         else: | ||||
|             img_h_page = img.shape[0] | ||||
|             img_w_page = img.shape[1] | ||||
|             img = img / float(255.0) | ||||
|             img = resize_image(img, model_height, model_width) | ||||
| 
 | ||||
|             label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2])) | ||||
| 
 | ||||
|             seg = np.argmax(label_p_pred, axis=3)[0] | ||||
|             seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
|             prediction_true = resize_image(seg_color, img_h_page, img_w_page) | ||||
|             prediction_true = prediction_true.astype(np.uint8) | ||||
|         return prediction_true[:, :, 0] | ||||
| 
 | ||||
|     def run(self, image=None, image_path=None, save=None, use_patches=False): | ||||
|         if (image is not None and image_path is not None) or (image is None and image_path is None): | ||||
|             raise ValueError("Must pass either a opencv2 image or an image_path") | ||||
|         if image_path is not None: | ||||
|             image = cv2.imread(image_path) | ||||
|         img_last = 0 | ||||
|         for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): | ||||
|             self.log.info(f"Predicting with model {model_file} [{n + 1}/{len(self.model_files)}]") | ||||
| 
 | ||||
|             res = self.predict(model, image, use_patches) | ||||
| 
 | ||||
|             img_fin = np.zeros((res.shape[0], res.shape[1], 3)) | ||||
|             res[:, :][res[:, :] == 0] = 2 | ||||
|             res = res - 1 | ||||
|             res = res * 255 | ||||
|             img_fin[:, :, 0] = res | ||||
|             img_fin[:, :, 1] = res | ||||
|             img_fin[:, :, 2] = res | ||||
| 
 | ||||
|             img_fin = img_fin.astype(np.uint8) | ||||
|             img_fin = (res[:, :] == 0) * 255 | ||||
|             img_last = img_last + img_fin | ||||
| 
 | ||||
|         kernel = np.ones((5, 5), np.uint8) | ||||
|         img_last[:, :][img_last[:, :] > 0] = 255 | ||||
|         img_last = (img_last[:, :] == 0) * 255 | ||||
|         if save: | ||||
|             # Create the output directory (and if necessary it's parents) if it doesn't exist already | ||||
|             Path(save).parent.mkdir(parents=True, exist_ok=True) | ||||
|             cv2.imwrite(save, img_last) | ||||
|         return img_last | ||||
|         with WorkerPool(n_jobs=number_of_workers, start_method='spawn') as pool: | ||||
|             model_dirs = itertools.repeat(model_directory, len(image_batches)) | ||||
|             input_data = zip(model_dirs, image_batches, output_batches, range(number_of_workers)) | ||||
|             contents = pool.map_unordered( | ||||
|                 batch_predict, | ||||
|                 make_single_arguments(input_data), | ||||
|                 iterable_len=number_of_workers, | ||||
|                 progress_bar=False | ||||
|             ) | ||||
|     else: | ||||
|         binarizer = SbbBinarizer() | ||||
|         binarizer.load_model(model_directory) | ||||
|         binarizer.binarize_image(image_path=input_path, save_path=output_path) | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue