mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-06-07 19:35:04 +02:00
Update README.md
This commit is contained in:
parent
24c9d37a2a
commit
42bca1441c
1 changed files with 27 additions and 18 deletions
45
README.md
45
README.md
|
@ -1,6 +1,6 @@
|
|||
# Binarization
|
||||
# sbb_binarization
|
||||
|
||||
> Binarization for document images
|
||||
> Document Image Binarization using pre-trained models
|
||||
|
||||
[](https://pypi.org/project/sbb-binarization/)
|
||||
[](https://circleci.com/gh/qurator-spk/sbb_binarization)
|
||||
|
@ -10,28 +10,35 @@
|
|||
|
||||
<img src="https://user-images.githubusercontent.com/952378/63592437-e433e400-c5b1-11e9-9c2d-889c6e93d748.jpg" width="180"><img src="https://user-images.githubusercontent.com/952378/63592435-e433e400-c5b1-11e9-88e4-3e441b61fa67.jpg" width="180"><img src="https://user-images.githubusercontent.com/952378/63592440-e4cc7a80-c5b1-11e9-8964-2cd1b22c87be.jpg" width="220"><img src="https://user-images.githubusercontent.com/952378/63592438-e4cc7a80-c5b1-11e9-86dc-a9e9f8555422.jpg" width="220">
|
||||
|
||||
## Introduction
|
||||
|
||||
This tool performs document image binarization using a trained ResNet50-UNet model.
|
||||
|
||||
## Installation
|
||||
|
||||
Clone the repository, enter it and run
|
||||
Python versions `3.7-3.10` are currently supported.
|
||||
|
||||
`pip install .`
|
||||
You can either install via
|
||||
|
||||
```
|
||||
pip install sbb-binarization
|
||||
```
|
||||
|
||||
or clone the repository, enter it and install (editable) with
|
||||
|
||||
```
|
||||
git clone git@github.com:qurator-spk/sbb_binarization.git
|
||||
cd sbb_binarization; pip install -e .
|
||||
```
|
||||
|
||||
### Models
|
||||
|
||||
Pre-trained models in HDF5 format can be downloaded from here:
|
||||
Pre-trained models can be downloaded from the locations below. We also provide the models and [model card](https://huggingface.co/SBB/sbb_binarization) on 🤗
|
||||
|
||||
https://qurator-data.de/sbb_binarization/
|
||||
| Version | Format | Download |
|
||||
|----------|:-------------:|-------|
|
||||
| 2021-03-09 | `SavedModel` | https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip |
|
||||
| 2021-03-09 | `HDF5` | https://qurator-data.de/sbb_binarization/2021-03-09/models.tar.gz |
|
||||
| 2020-01-16 | `SavedModel` | https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2020_01_16.zip |
|
||||
| 2020-01-16 | `HDF5` | https://qurator-data.de/sbb_binarization/2020-01-16/models.tar.gz |
|
||||
|
||||
We also provide models in Tensorflow SavedModel format via Huggingface and Github release assets:
|
||||
|
||||
https://huggingface.co/SBB/sbb_binarization
|
||||
https://github.com/qurator-spk/sbb_binarization/releases
|
||||
|
||||
With [OCR-D](https://ocr-d.de/), you can use the [Resource Manager](Tensorflow SavedModel) to deploy models, e.g.
|
||||
With [OCR-D](https://ocr-d.de/), you can use the [Resource Manager](https://ocr-d.de/en/models) to deploy models, e.g.
|
||||
|
||||
ocrd resmgr download ocrd-sbb-binarize "*"
|
||||
|
||||
|
@ -40,11 +47,13 @@ With [OCR-D](https://ocr-d.de/), you can use the [Resource Manager](Tensorflow S
|
|||
|
||||
```sh
|
||||
sbb_binarize \
|
||||
-m <path to directory containing model files \
|
||||
-m <path to directory containing model files> \
|
||||
<input image> \
|
||||
<output image>
|
||||
```
|
||||
|
||||
**Note:** the output image MUST use either `.tif` or `.png` as file extension to produce a binary image. Input images can also be JPEG.
|
||||
|
||||
Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results.
|
||||
|
||||
### Example
|
||||
|
@ -65,6 +74,6 @@ For simple smoke tests, the following will
|
|||
- download test data
|
||||
- run the OCR-D wrapper (on page and region level):
|
||||
|
||||
make model
|
||||
make models
|
||||
make test
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue