mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-06-09 12:19:56 +02:00
Merge pull request #11 from OCR-D/altimage-comments
🐛 typo: comment{,s}, fix #8
This commit is contained in:
commit
4d145cc905
2 changed files with 8 additions and 4 deletions
|
@ -57,7 +57,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
|
||||
oplevel = self.parameter['operation_level']
|
||||
model_path = self.parameter['model'] # pylint: disable=attribute-defined-outside-init
|
||||
binarizer = SbbBinarizer(model_dir=model_path)
|
||||
binarizer = SbbBinarizer(model_dir=model_path, logger=LOG)
|
||||
|
||||
for n, input_file in enumerate(self.input_files):
|
||||
file_id = make_file_id(input_file, self.output_file_grp)
|
||||
|
@ -77,7 +77,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
file_id + '.IMG-BIN',
|
||||
page_id=input_file.pageId,
|
||||
file_grp=self.output_file_grp)
|
||||
page.add_AlternativeImage(AlternativeImageType(filename=bin_image_path, comment='%s,binarized' % page_xywh['features']))
|
||||
page.add_AlternativeImage(AlternativeImageType(filename=bin_image_path, comments='%s,binarized' % page_xywh['features']))
|
||||
|
||||
elif oplevel == 'region':
|
||||
regions = page.get_AllRegions(['Text', 'Table'], depth=1)
|
||||
|
|
|
@ -18,13 +18,16 @@ from keras.models import load_model
|
|||
sys.stderr = stderr
|
||||
import tensorflow as tf
|
||||
|
||||
import logging
|
||||
|
||||
def resize_image(img_in, input_height, input_width):
|
||||
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
class SbbBinarizer:
|
||||
|
||||
def __init__(self, model_dir):
|
||||
def __init__(self, model_dir, logger=None):
|
||||
self.model_dir = model_dir
|
||||
self.log = logger if logger else logging.getLogger('SbbBinarizer')
|
||||
|
||||
def start_new_session(self):
|
||||
config = tf.ConfigProto()
|
||||
|
@ -194,7 +197,8 @@ class SbbBinarizer:
|
|||
self.start_new_session()
|
||||
list_of_model_files = glob('%s/*.h5' % self.model_dir)
|
||||
img_last = 0
|
||||
for model_in in list_of_model_files:
|
||||
for n, model_in in enumerate(list_of_model_files):
|
||||
self.log.info('Predicting with model %s [%s/%s]' % (model_in, n + 1, len(list_of_model_files)))
|
||||
|
||||
res = self.predict(model_in, image, use_patches)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue