You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
Go to file
Clemens Neudecker 0d8a9f33f5
Update README.md
remove patches parameter from readme
2 years ago
.circleci use resmgr for model download 4 years ago
repo add assets subrepo 4 years ago
sbb_binarize issue #45 the patches option is omitted and it means that documents will be processed in patches while no patches is not desired by the tool 2 years ago
.gitignore 📦 v0.0.2 4 years ago
.gitkeep Add new directory, you can find corresponding models in qurator-data 5 years ago
.gitmodules add assets subrepo 4 years ago
CHANGELOG.md 📦 v0.0.10 2 years ago
LICENSE Add LICENSE 5 years ago
Makefile fix test 4 years ago
README.md Update README.md 2 years ago
make.sh Add new file 5 years ago
ocrd-tool.json add ocrd-tool.json 4 years ago
requirements.txt depend on tensorflow not tensorflow-gpu, drop holding h5py 3 years ago
setup.py minimal CI setup 4 years ago

README.md

Binarization

Binarization for document images

Examples

Introduction

This tool performs document image binarization using a trained ResNet50-UNet model.

Installation

Clone the repository, enter it and run

pip install .

Models

Pre-trained models in HDF5 format can be downloaded from here:

https://qurator-data.de/sbb_binarization/

We also provide a Tensorflow saved_model via Huggingface:

https://huggingface.co/SBB/sbb_binarization

Usage

sbb_binarize \
  -m <path to directory containing model files \
  <input image> \
  <output image>

Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results.

Example

sbb_binarize -m /path/to/model/ myimage.tif myimage-bin.tif

To use the OCR-D interface:

ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"