Go to file
vahidrezanezhad 93cba20810 inference is implemented with batch size bigger than 1
.circleci use resmgr for model download
repo add assets subrepo
sbb_binarize inference is implemented with batch size bigger than 1
.gitignore 📦 v0.0.2
.gitkeep Add new directory, you can find corresponding models in qurator-data
.gitmodules add assets subrepo
CHANGELOG.md Update CHANGELOG.md
LICENSE Add LICENSE
Makefile fix test
README.md improve usage instructions
make.sh Add new file
ocrd-tool.json add ocrd-tool.json
requirements.txt Update requirements.txt
setup.py minimal CI setup

README.md

Binarization

Binarization for document images

Examples

Introduction

This tool performs document image binarization using trained models. The method is based on Calvo-Zaragoza and Gallego, 2018.

Installation

Clone the repository, enter it and run

pip install .

Models

Pre-trained models can be downloaded from here:

https://qurator-data.de/sbb_binarization/

Usage

sbb_binarize \
  --patches \
  -m <path to directory containing model files> \
  <input image> \
  <output image>

Note In virtually all cases, applying the --patches flag will improve the quality of results.

Example

sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif

To use the OCR-D interface:

ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"