1
0
Fork 0

57 Commits (2b98bd80f011f583deca0ec855cd170b1e06c037)
 

Author SHA1 Message Date
neingeist 2b98bd80f0 Implement PCA 10 years ago
neingeist 5f3f65c69c Random initialization 10 years ago
neingeist 6c51a29ca2 Compute centroid means (vectorized) 10 years ago
neingeist 39b09f144a Compute centroid means (unvectorized) 10 years ago
neingeist f8c0087ff3 Find closest centroids 10 years ago
neingeist 229023b69c Add exercise 7 10 years ago
neingeist 348d6325cb Email feature extraction 10 years ago
neingeist f0d4b4d208 Preprocess email 10 years ago
neingeist 203cbc997c Implement grid search and determine best parameters for C and sigma 10 years ago
neingeist e67166bc8e Implement Gaussian kernel 10 years ago
neingeist 7ab47a4d35 Add exercise 6 10 years ago
neingeist 2ab445f9a8 Compute the test set error 10 years ago
neingeist 78830aaea7 Validation curve function 10 years ago
neingeist 3751214442 Use lambda=1 for regularizing the polynomial fit 10 years ago
neingeist 717ea8c788 Polynomial feature mapping 10 years ago
neingeist 1cc58802eb Learning curve function 10 years ago
neingeist 90f2928cee Move .gitignore to top-level directory 10 years ago
neingeist 2d6da3e3d4 Regularized linear regression gradient 10 years ago
neingeist 6530916642 Regularized linear regression cost function 10 years ago
neingeist d93d111106 Add programming exercise 5 10 years ago
neingeist eccdcc0d81 Regularized NN gradient 10 years ago
neingeist bdecab8cf8 Implement back propagation 10 years ago
neingeist 052f0625c3 Random initialization 10 years ago
neingeist 863f1d7157 Compute the sigmoid gradient 10 years ago
neingeist 395c5676dc Add regularization to the cost function 10 years ago
neingeist f2154a8cc1 Compute cost function for the neural network 10 years ago
neingeist be6f3cbdef Move PDFs in top directory 10 years ago
neingeist a17f47e396 Add programming exercise 4 10 years ago
neingeist 073fbf0204 Add neural network prediction function 10 years ago
neingeist 3bf3d9fdc3 Add prediction function for one-vs-all classification 10 years ago
neingeist cf0d25440c Train num_labels one-vs-all logistic regression classifiers 10 years ago
neingeist 9117809537 Vectorized regularized logistic regression, again 10 years ago
neingeist 326a924044 Add exercise 3 10 years ago
neingeist f9243ef593 Simplify regularization term 10 years ago
neingeist 9e9b9990bb Compute the gradient for regularized logistic regression 10 years ago
neingeist f391ac661e Add cost function for regularized logistic regression 10 years ago
neingeist 224a17e4d3 Plot negative samples in red 10 years ago
neingeist c0b4d95f75 Predict 10 years ago
neingeist 31c4ac1967 Compute the gradient for logistic regression 10 years ago
neingeist 8c100a3f49 Compute the cost function for logistic regression 10 years ago
neingeist b863a3863e .gitignore ml_login_data.mat 10 years ago
neingeist efe94282b4 Compute the sigmoid function 10 years ago
neingeist d52fa95328 Plot the data 10 years ago
neingeist 580e52ddc5 Initial commit of ex2 10 years ago
neingeist ba377e29ba Linear regressing using the normal equation 10 years ago
neingeist ad9ab582de Gradient descent for multiple features 10 years ago
neingeist 3dc8897634 Compute cost for multiple variables 10 years ago
neingeist e38033c00d Clean up whitespace 10 years ago
neingeist 8559c243c5 Normalize features 10 years ago
neingeist 613220bb3e Clean up whitespace 10 years ago