|
10ef3bd80e
|
Regularized Gradient
|
2014-11-27 23:50:42 +01:00 |
|
|
111a0d1cca
|
Regularized Cost
|
2014-11-27 23:47:18 +01:00 |
|
|
e1e66778f8
|
Collaborative Filtering Gradient
|
2014-11-27 23:43:53 +01:00 |
|
|
fc28204594
|
Collaborative Filtering Cost
|
2014-11-27 23:31:49 +01:00 |
|
|
87457bb7b4
|
Select threshold
|
2014-11-26 22:46:38 +01:00 |
|
|
4bc9a2b246
|
Estimate Gaussian
|
2014-11-26 02:15:27 +01:00 |
|
|
33e8cbac01
|
Add exercise 8
|
2014-11-26 00:20:22 +01:00 |
|
|
beb652a5be
|
Recover data
|
2014-11-19 21:22:28 +01:00 |
|
|
798f82ecc1
|
Project data
|
2014-11-19 21:12:54 +01:00 |
|
|
2b98bd80f0
|
Implement PCA
|
2014-11-19 20:47:27 +01:00 |
|
|
5f3f65c69c
|
Random initialization
|
2014-11-17 23:20:44 +01:00 |
|
|
6c51a29ca2
|
Compute centroid means (vectorized)
|
2014-11-17 23:13:57 +01:00 |
|
|
39b09f144a
|
Compute centroid means (unvectorized)
|
2014-11-17 23:02:10 +01:00 |
|
|
f8c0087ff3
|
Find closest centroids
|
2014-11-17 23:01:44 +01:00 |
|
|
229023b69c
|
Add exercise 7
|
2014-11-17 21:58:10 +01:00 |
|
|
348d6325cb
|
Email feature extraction
|
2014-11-13 23:50:52 +01:00 |
|
|
f0d4b4d208
|
Preprocess email
|
2014-11-13 23:47:04 +01:00 |
|
|
203cbc997c
|
Implement grid search and determine best parameters for C and sigma
|
2014-11-13 23:34:04 +01:00 |
|
|
e67166bc8e
|
Implement Gaussian kernel
|
2014-11-13 22:59:48 +01:00 |
|
|
7ab47a4d35
|
Add exercise 6
|
2014-11-10 23:44:39 +01:00 |
|
|
2ab445f9a8
|
Compute the test set error
|
2014-11-06 13:49:17 +01:00 |
|
|
78830aaea7
|
Validation curve function
|
2014-11-06 13:31:44 +01:00 |
|
|
3751214442
|
Use lambda=1 for regularizing the polynomial fit
|
2014-11-06 12:23:09 +01:00 |
|
|
717ea8c788
|
Polynomial feature mapping
|
2014-11-06 12:13:13 +01:00 |
|
|
1cc58802eb
|
Learning curve function
|
2014-11-06 12:04:53 +01:00 |
|
|
90f2928cee
|
Move .gitignore to top-level directory
|
2014-11-06 01:19:29 +01:00 |
|
|
2d6da3e3d4
|
Regularized linear regression gradient
|
2014-11-06 01:12:38 +01:00 |
|
|
6530916642
|
Regularized linear regression cost function
|
2014-11-06 00:53:49 +01:00 |
|
|
d93d111106
|
Add programming exercise 5
|
2014-11-05 11:20:50 +01:00 |
|
|
eccdcc0d81
|
Regularized NN gradient
|
2014-11-02 13:48:34 +01:00 |
|
|
bdecab8cf8
|
Implement back propagation
|
2014-11-02 13:27:11 +01:00 |
|
|
052f0625c3
|
Random initialization
|
2014-11-01 21:22:34 +01:00 |
|
|
863f1d7157
|
Compute the sigmoid gradient
|
2014-11-01 21:18:32 +01:00 |
|
|
395c5676dc
|
Add regularization to the cost function
|
2014-11-01 20:42:58 +01:00 |
|
|
f2154a8cc1
|
Compute cost function for the neural network
|
2014-11-01 20:30:58 +01:00 |
|
|
be6f3cbdef
|
Move PDFs in top directory
|
2014-11-01 14:54:47 +01:00 |
|
|
a17f47e396
|
Add programming exercise 4
|
2014-11-01 14:54:22 +01:00 |
|
|
073fbf0204
|
Add neural network prediction function
|
2014-10-23 23:36:15 +02:00 |
|
|
3bf3d9fdc3
|
Add prediction function for one-vs-all classification
|
2014-10-23 22:24:55 +02:00 |
|
|
cf0d25440c
|
Train num_labels one-vs-all logistic regression classifiers
|
2014-10-23 21:17:20 +02:00 |
|
|
9117809537
|
Vectorized regularized logistic regression, again
|
2014-10-21 21:20:26 +02:00 |
|
|
326a924044
|
Add exercise 3
|
2014-10-21 20:59:55 +02:00 |
|
|
f9243ef593
|
Simplify regularization term
|
2014-10-16 01:03:58 +02:00 |
|
|
9e9b9990bb
|
Compute the gradient for regularized logistic regression
|
2014-10-15 19:54:07 +02:00 |
|
|
f391ac661e
|
Add cost function for regularized logistic regression
|
2014-10-15 10:10:30 +02:00 |
|
|
224a17e4d3
|
Plot negative samples in red
|
2014-10-14 10:19:09 +02:00 |
|
|
c0b4d95f75
|
Predict
|
2014-10-14 10:14:29 +02:00 |
|
|
31c4ac1967
|
Compute the gradient for logistic regression
|
2014-10-14 07:46:10 +02:00 |
|
|
8c100a3f49
|
Compute the cost function for logistic regression
|
2014-10-14 07:40:42 +02:00 |
|
|
b863a3863e
|
.gitignore ml_login_data.mat
|
2014-10-13 23:15:15 +02:00 |
|